In this study, zinc borate hydrate (Zn 3 B 6 O 12 · 3.5H 2 O) was synthesized from zinc oxide (ZnO) and boric acid (H 3 BO 3 ) via a novel method of ultrasonic irradiation. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy were used to characterize the synthesized products. Scanning electron microscopy (SEM) was used to determine the effects of reaction time and reaction temperature on the morphology of the products. Thermal dehydration kinetics were studied using thermal gravimetry and differential thermal gravimetry analysis (TG/DTA). The Doyle and Kissinger non-isothermal kinetic methods were used to analyse the TG/DTA data. The XRD results confirmed the successful synthesis of Zn 3 B 6 O 12 · 3.5H 2 O at a range of reaction temperatures and times. Additionally, FT-IR and Raman analysis of the products identified peaks specific to zinc borate. Using the methods of Doyle and Kissinger, the activation energies of thermal dehydration of zinc borate were found to be 341.61 kJ/mol and 390.17 kJ/mol, respectively.
Magnesium borates are significant compounds due to their advanced mechanical and thermal durability properties. This group of minerals can be used in ceramic industry, in detergent industry, and as neutron shielding material, phosphor of thermoluminescence by dint of their extraordinary specialties. In the present study, the synthesis of magnesium borate via hydrothermal method from sodium borates and physical properties of synthesized magnesium borate minerals were investigated. The characterization of the products was carried out by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopies, and differential thermal analysis and thermal gravimetry (DTA/TG). The surface morphology was examined by scanning electron microscopy (SEM). B2O3content was determined through titration. The electrical resistivity/conductivity properties of products were measured by Picoammeter Voltage Source. UV-vis spectrometer was used to investigate optical absorption characteristics of synthesized minerals in the range 200–1000 nm at room temperature. XRD results identified the synthesized borate minerals as admontite [MgO(B2O3)3·7(H2O)] with code number “01-076-0540” and mcallisterite [Mg2(B6O7(OH)6)2·9(H2O)] with code number “01-070-1902.” The FT-IR and Raman spectra of the obtained samples were similar with characteristic magnesium borate bands. The investigation of the SEM images remarked that both nano- and microscale minerals were produced. The reaction yields were between 75.1 and 98.7%.
In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high effi ciency and high crystallinity in the synthesis magnesium borate compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.