MSC-EV treatment significantly ameliorated inflammation-induced neuronal cellular degeneration reduced microgliosis and prevented reactive astrogliosis. Short-term myelination deficits and long-term microstructural abnormalities of the white matter were restored by MSC-EV administration. Morphological effects of MSC-EV treatment resulted in improved long-lasting cognitive functions INTERPRETATION: MSC-EVs ameliorate inflammation-induced cellular damage in a rat model of preterm brain injury. MSC-EVs may serve as a novel therapeutic option by prevention of neuronal cell death, restoration of white matter microstructure, reduction of gliosis and long-term functional improvement.
Cerebral white matter injury is a leading cause of adverse neurodevelopmental outcome in prematurely born infants involving cognitive deficits in later life. Despite increasing knowledge about the pathophysiology of perinatal brain injury, therapeutic options are limited. In the adult demyelinating disease multiple sclerosis the sphingosine-1-phosphate (S1P) receptor modulating substance fingolimod (FTY720) has beneficial effects. Herein, we evaluated the neuroprotective potential of FTY720 in a neonatal model of oxygen-toxicity, which is associated with hypomyelination and impaired neuro-cognitive outcome. A single dose of FTY720 (1mg/kg) at the onset of neonatal hyperoxia (24h 80% oxygen on postnatal day 6) resulted in improvement of neuro-cognitive development persisting into adulthood. This was associated with reduced microstructural white matter abnormalities 4 months after the insult. In search of the underlying mechanisms potential non-classical (i.e. lymphocyte-independent) pathways were analysed shortly after the insult, comprising modulation of oxidative stress and local inflammatory responses as well as myelination, oligodendrocyte degeneration and maturation. Treatment with FTY720 reduced hyperoxia-induced oxidative stress, microglia activation and associated pro-inflammatory cytokine expression. In vivo and in vitro analyses further revealed that oxygen-induced hypomyelination is restored to control levels, which was accompanied by reduced oligodendrocyte degeneration and enhanced maturation. Furthermore, hyperoxia-induced elevation of S1P receptor 1 (S1P1) protein expression on in vitro cultured oligodendrocyte precursor cells was reduced by activated FTY720 and protection from degeneration is abrogated after selective S1P1 blockade. Finally, FTY720s' classical mode of action (i.e. retention of immune cells within peripheral lymphoid organs) was analysed demonstrating that FTY720 diminished circulating lymphocyte counts independent from hyperoxia. Cerebral immune cell counts remained unchanged by hyperoxia and by FTY720 treatment. Taken together, these results suggest that beneficial effects of FTY720 in neonatal oxygen-induced brain injury may be rather attributed to its anti-oxidative and anti-inflammatory capacity acting in concert with a direct protection of developing oligodendrocytes than to a modulation of peripheral lymphocyte trafficking. Thus, FTY720 might be a potential new therapeutic option for the treatment of neonatal brain injury through reduction of white matter damage.
Background: Perinatal asphyxia, leading to neonatal encephalopathy, is one of the leading causes for child mortality and long-term morbidities. Neonatal encephalopathy rates are significantly increased in newborns with perinatal infection. Therapeutic hypothermia is only neuroprotective in 50% of cooled asphyxiated newborns. As shown experimentally, cooling has failed to be neuroprotective after inflammation-sensitized hypoxic ischemic (HI) brain injury. Microglia are thought to be key players after inflammation-sensitized HI brain injury. We performed this study investigating early microglia phenotype polarization in our newborn animal model of inflammation-sensitized HI brain injury, better understanding the underlying pathophysiological processes. Methods: Seven days old Wistar rat pups were injected with either vehicle (NaCl 0.9%) or E. coli lipopolysaccharide (LPS), followed by left carotid ligation combined with global hypoxia inducing a mild unilateral hypoxic-ischemic injury. Pups were randomized to (1) Sham group ( n = 41), (2) LPS only group ( n = 37), (3) Veh/HI group ( n = 56), and (4) LPS/HI group ( n = 79). On postnatal days 8 and 14 gene-expression analysis or immunohistochemistry was performed describing early microglia polarization in our model. Results: We confirmed that LPS pre-sensitization significantly increases brain area loss and induced microglia activation and neuronal injury after mild hypoxia-ischemia. Additionally, we show that microglia upregulate pro-inflammatory genes involving NLRP-3 inflammasome gene expression 24 h after inflammation-sensitized hypoxic-ischemic brain injury. Conclusion: These results demonstrate that microglia are early key mediators of the inflammatory response following inflammation-sensitized HI brain injury and that they polarize into a predominant pro-inflammatory phenotype 24 h post HI. This may lead to new treatment options altering microglia phenotype polarization early after HI brain injury.
Background: Microglia are key mediators of inflammation during perinatal brain injury. As shown experimentally after inflammation-sensitized hypoxic ischemic (HI) brain injury, microglia are activated into a pro-inflammatory status 24 h after HI involving the NLRP3 inflammasome pathway. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been shown to be involved in NLRP3 activation, although their specific role during perinatal brain injury remains unclear. In this study we investigated the involvement of CXCL1/CXCR2 in brain tissue and microglia and brain tissue after inflammation-sensitized HI brain injury of newborn rats. Methods: Seven-day old Wistar rat pups were either injected with vehicle (NaCl 0.9%) or E. coli lipopolysaccharide (LPS), followed by left carotid ligation combined with global hypoxia (8% O 2 for 50 min). Pups were randomized into four different treatment groups: (1) Sham group ( n = 21), (2) LPS only group ( n = 20), (3) Veh/HI group ( n = 39), and (4) LPS/HI group ( n = 42). Twenty-four hours post hypoxia transcriptome and gene expression analysis were performed on ex vivo isolated microglia cells in our model. Additionally protein expression was analyzed in different brain regions at the same time point. Results: Transcriptome analyses showed a significant microglial upregulation of the chemokine CXCL1 and its receptor CXCR2 in the LPS/HI group compared with the other groups. Gene expression analysis showed a significant upregulation of CXCL1 and NLRP3 in microglia cells after inflammation-sensitized hypoxic-ischemic brain injury. Additionally, protein expression of CXCL1 was significantly upregulated in cortex of male pups from the LPS/HI group. Conclusion: These results indicate that the CXCL1/CXCR2 pathway may be involved during pro-inflammatory microglia activation following inflammation-sensitized hypoxic-ischemic brain injury in neonatal rats. This may lead to new treatment options altering CXCR2 activation early after HI brain injury.
Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.