Daniel Maeusezahl and colleagues conducted a cluster-randomized controlled trial in rural Bolivia of solar drinking water disinfection, and find only moderate compliance with the intervention and no evidence of reduction in diarrhea among children.
Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment.
Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda.
The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.