SUMMARY In long-lived C. elegans insulin/IGF-1 pathway mutants, the life-extending FOXO transcription factor DAF-16 is present throughout the animal, but we find that its activity in a single tissue can delay the aging of other tissues and extend the animal’s life span. To better understand the topography of DAF-16 action among the tissues, we analyzed a collection of DAF-16-regulated genes. DAF-16 regulated most of these genes in a cell-autonomous fashion, often using tissue-specific GATA factors to direct their expression to specific tissues. DAF-16 could also act cell nonautonomously to influence gene expression. DAF-16 affected gene expression in other cells, at least in part, via the lipid-gene regulator MDT-15. DAF-16, and probably MDT-15, could act cell non-autonomously in the endoderm to ameliorate the paralysis caused by expressing Alzheimer’s Aβ protein in muscles. These findings suggest that MDT-15-dependent intercellular signals, possibly lipid signals, can help to coordinate tissue physiology, enhance proteostasis, and extend life in response to DAF-16/FOXO activity.
Variation in the acute response to ethanol between individuals has a significant impact on determining susceptibility to alcoholism. The degree to which genetics contributes to this variation is of great interest. Here we show that allelic variation that alters the functional level of NPR-1, a neuropeptide Y (NPY) receptor-like protein, can account for natural variation in the acute response to ethanol in wild strains of Caenorhabditis elegans. NPR-1 negatively regulates the development of acute tolerance to ethanol, a neuroadaptive process that compensates for effects of ethanol. Furthermore, dynamic changes in the NPR-1 pathway provide a mechanism for ethanol tolerance in C. elegans. This suggests an explanation for the conserved function of NPY-related pathways in ethanol responses across diverse species. Moreover, these data indicate that genetic variation in the level of NPR-1 function determines much of the phenotypic variation in adaptive behavioral responses to ethanol that are observed in natural populations.
Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective) mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1) mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.
Understanding the genes and mechanisms involved in acute alcohol responses has the potential to allow us to predict an individual's predisposition to developing an alcohol use disorder. To better understand the molecular pathways involved in the activating effects of alcohol and the acute functional tolerance that can develop to such effects, we characterized a novel ethanolinduced hypercontraction response displayed by Caenorhabditis elegans. We compared body size of animals prior to and during ethanol treatment and showed that acute exposure to ethanol produced a concentration-dependent decrease in size followed by recovery to their untreated size by 40 min despite continuous treatment. An increase in cholinergic signaling, leading to muscle hypercontraction, is implicated in this effect because pretreatment with mecamylamine, a nicotinic acetylcholine receptor (nAChR) antagonist, blocked ethanol-induced hypercontraction, as did mutations causing defects in cholinergic signaling (cha-1 and unc-17). Analysis of mutations affecting specific subunits of nAChRs excluded a role for the ACR-2R, the ACR-16R, and the levamisole-sensitive AChR and indicated that this excitation effect is dependent on an uncharacterized nAChR that contains the UNC-63 a-subunit. We performed a forward genetic screen and identified eg200, a mutation that affects a conserved glycine in EAT-6, the a-subunit of the Na + /K + ATPase. The eat-6(eg200) mutant fails to develop tolerance to ethanol-induced hypercontraction and remains contracted for at least 3 hr of continuous ethanol exposure. These data suggest that cholinergic signaling through a specific a-subunit-containing nAChR is involved in ethanol-induced excitation and that tolerance to this ethanol effect is modulated by Na + /K + ATPase function.T HE abuse of alcohol is a cause of significant societal and health-related problems. Despite the common usage of this drug, the molecular underpinnings of alcohol's acute actions on the brain are poorly understood. Alcohol (ethanol) has biphasic behavioral effects in humans and other animals, acting as a stimulant at lower concentrations and as a depressant at higher concentrations. Understanding the molecular nature of these biphasic effects is made difficult by the fact that ethanol interacts with, and alters the function of, many proteins, including neurotransmitter receptors and ion channels (Harris et al. 2008;Spanagel 2009). A commonly suggested class of ethanol targets is ligand-gated ion channels (LGICs), which include NMDA glutamate receptors, and members of a subclass of LGICs, the Cys-loop superfamily, including GABA A , glycine, and nicotinic acetylcholine receptors (nAChRs) (Olsen et al. 2014). Effects on the GABA A and glutamate receptors are hypothesized to play a significant role in the depressant effects of ethanol (Harris et al. 2008). Locomotor activation by low to moderate concentrations of ethanol in rodents is thought to model the euphoric effects of ethanol in humans (Phillips and Shen 1996). Locomotor activat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.