Most cancers in humans are large, measuring centimetres in diameter, and composed of many billions of cells1. An equivalent mass of normal cells would be highly heterogeneous as a result of the mutations that occur during each cell division. What is remarkable about cancers is that virtually every neoplastic cell within a large tumour often contains the same core set of genetic alterations, with heterogeneity confined to mutations that emerge late during tumour growth2–5. How such alterations expand within the spatially constrained three-dimensional architecture of a tumour, and come to dominate a large, pre-existing lesion, has been unclear. Here we describe a model for tumour evolution that shows how short-range dispersal and cell turnover can account for rapid cell mixing inside the tumour. We show that even a small selective advantage of a single cell within a large tumour allows the descendants of that cell to replace the precursor mass in a clinically relevant time frame. We also demonstrate that the same mechanisms can be responsible for the rapid onset of resistance to chemotherapy. Our model not only provides insights into spatial and temporal aspects of tumour growth, but also suggests that targeting short-range cellular migratory activity could have marked effects on tumour growth rates.
Background & Aims The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. Methods We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid-pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53 and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers were compared with that of clinical markers, and a combination of molecular and clinical markers. Results We identified molecular markers and clinical features that classified cyst type with 90%–100% sensitivity and 92%–98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery, and could therefore reduce the number of unnecessary operations by 91%. Conclusions We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.