This paper describes the use of the non-homogeneous stochastic Weibull diffusion process, based on the two-parameter Weibull density function (the trend of which is proportional to the two-parameter Weibull probability density function). The trend function (conditioned and non-conditioned) is analyzed to obtain fits and forecasts for a real data set, taking into account the mean value of the process, the maximum likelihood estimators of the parameters of the model and the computational problems that may arise. To carry out the task, we employ the simulated annealing method for finding the estimators values and achieve the study. Finally, to evaluate the capacity of the model, the study is applied to real modeling data where we discuss the accuracy according to error measures.
In this paper we study a new stochastic diffusion process based on the Goel-Okumoto curve. Such a process can be considered as an extension of the nonhomogeneous lognormal diffusion process. From the corresponding Itô's stochastic differential equation (SDE), firstly we establish the probabilistic characteristics of the studied process, such as the solution to the SDE, the probability transition density function and their distribution, the moments function, in particular the conditional and non-conditional trend functions. Secondly, we treat the parameters estimation problem by using the maximum likelihood method in basis of the discrete sampling, thus we obtain nonlinear equations that can be solved by numerical methods. Finally, the proposed model is applied to the data of the broad money (% GDP) of Morocco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.