A new stochastic diffusion process based on Generalized Brody curve is proposed. Such a process can be considered as an extension of the nonhomogeneous lognormal diffusion process. From the corresponding Itô’s stochastic differential equation (SDE), firstly we establish the probabilistic characteristics of the studied process, such as the solution to the SDE, the probability transition density function and their distribution, the moments function, in particular the conditional and non-conditional trend functions. Secondly, we treat the parameters estimation problem by using the maximum likelihood method in basis of the discrete sampling, thus we obtain nonlinear equations that can be solved by metaheuristic optimization algorithms such as simulated annealing and variable search neighborhood. Finally, we perform a simulation studies and we apply the model to the data of life expectancy at birth in Morocco.
In this paper we study a new stochastic diffusion process based on the Goel-Okumoto curve. Such a process can be considered as an extension of the nonhomogeneous lognormal diffusion process. From the corresponding Itô's stochastic differential equation (SDE), firstly we establish the probabilistic characteristics of the studied process, such as the solution to the SDE, the probability transition density function and their distribution, the moments function, in particular the conditional and non-conditional trend functions. Secondly, we treat the parameters estimation problem by using the maximum likelihood method in basis of the discrete sampling, thus we obtain nonlinear equations that can be solved by numerical methods. Finally, the proposed model is applied to the data of the broad money (% GDP) of Morocco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.