We put forward architecture of a framework for integration of data from moving objects related to urban transportation network. Most of this research refers to the GPS outdoor geolocation technology and uses distributed cloud infrastructure with big data NoSQL database. A network of intelligent mobile sensors, distributed on urban network, produces congestion traffic patterns. Congestion predictions are based on extended simulation model. This model provides traffic indicators calculations, which fuse with the GPS data for allowing estimation of traffic states across the whole network. The discovery process of congestion patterns uses semantic trajectories metamodel given in our previous works. The challenge of the proposed solution is to store patterns of traffic, which aims to ensure the surveillance and intelligent real-time control network to reduce congestion and avoid its consequences. The fusion of real-time data from GPS-enabled smartphones integrated with those provided by existing traffic systems improves traffic congestion knowledge, as well as generating new information for a soft operational control and providing intelligent added value for transportation systems deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.