Ataxia-ocular apraxia 2 (AOA2) was recently identified as a new autosomal recessive ataxia. We have now identified causative mutations in 15 families, which allows us to clinically define this entity by onset between 10 and 22 years, cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia and elevated alpha-fetoprotein (AFP). Ten of the fifteen mutations cause premature termination of a large DEAxQ-box helicase, the human ortholog of yeast Sen1p, involved in RNA maturation and termination.We previously identified a 16-cM interval on chromosome 9q34 associated with an autosomal recessive adolescent-onset cerebellar ataxia segregating in two families 1,2 , one with additional oculomotor apraxia 1 and the second with associated elevated serum AFP, immunoglobulins and creatine kinase levels but no oculomotor apraxia 2,3 . We identified nine additional families with ataxia linked to 9q34 by homozygosity mapping (Supplementary Methods online). As most affected individuals had both oculomotor apraxia and elevated AFP levels we assumed that they were affected by the same disorder, which we named AOA2 (OMIM 606002). We identified distal and proximal recombinations in families with two affected individuals (Fig. 1a), localizing the defective gene underlying AOA2 to a 1.1-Mb interval containing 13 genes ( Fig. 1b) and three groups of overlapping spliced expressed-sequence tags, which we analyzed for nucleotide changes but found no mutations. We also found that the unspliced mRNA AK024331 overlaps with the KIAA0625 cDNA and is part of a larger transcript overlapping with additional exons on the 5′ side. We obtained an open reading frame of 8,031 nucleotides and 24 exons (Fig. 1c), of which exon 8 was 4,177 nucleotides long. We confirmed the prediction and size of the transcript by long-range RT-PCR experiments spanning the putative exon 1 and 3′ untranslated region in human fibroblast and lymphoblastoid cell lines (data not shown) and by hybridization of a human northern blot with a probe spanning putative exons 8-24 (Fig. 1d). We also identified an alternative transcript that is 2.4 kb longer, resulting from a second polyadenylation site (human mRNAs AB014525 and AK022902; Fig. 1d).We sequenced exons 1-18 and flanking intronic sequences in families with ataxia linked to this region and in additional individuals with either AOA or ataxia with elevated AFP levels and found 15 different disease-associated mutations in 15 families ( Table 1). Ten of these mutations, including mutations in the two families in whom we first identified AOA2, cause truncation of the protein, indicating that this is the gene underlying AOA2. We found the nonsense mutation R1363X in three unrelated families originating from Portugal, Cabo Verde (once a Portuguese colony) and Spain, suggestive of an Iberian founder event, although recurrent C→T changes on this CpG dinucleotide cannot be formally excluded. Absence of the five missense mutations in 150 unrelated and unaffected individuals sharing the same ethnic origin as the affected in...
Disorganization of the neurofilament network is a prominent feature of several neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy and axonal Charcot-Marie-Tooth disease. Giant axonal neuropathy (GAN, MIM 256850), a severe, autosomal recessive sensorimotor neuropathy affecting both the peripheral nerves and the central nervous system, is characterized by neurofilament accumulation, leading to segmental distension of the axons. GAN corresponds to a generalized disorganization of the cytoskeletal intermediate filaments (IFs), to which neurofilaments belong, as abnormal aggregation of multiple tissue-specific IFs has been reported: vimentin in endothelial cells, Schwann cells and cultured skin fibroblasts, and glial fibrillary acidic protein (GFAP) in astrocytes. Keratin IFs also seem to be alterated, as most patients present characteristic curly or kinky hairs. We report here identification of the gene GAN, which encodes a novel, ubiquitously expressed protein we have named gigaxonin. We found one frameshift, four nonsense and nine missense mutations in GAN of GAN patients. Gigaxonin is composed of an amino-terminal BTB (for Broad-Complex, Tramtrack and Bric a brac) domain followed by a six kelch repeats, which are predicted to adopt a beta-propeller shape. Distantly related proteins sharing a similar domain organization have various functions associated with the cytoskeleton, predicting that gigaxonin is a novel and distinct cytoskeletal protein that may represent a general pathological target for other neurodegenerative disorders with alterations in the neurofilament network.
Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression.
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a common and clinically distinct form of familial spastic paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval and identified ten mutations in a previously unidentified gene expressed ubiquitously in the nervous system but most prominently in the cerebellum, cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense or insertions and deletions leading to a frameshift, suggesting a loss-of-function mechanism. The identification of the function of the gene will provide insight into the mechanisms leading to the degeneration of the corticospinal tract and other brain structures in this frequent form of ARHSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.