An original approach never tackled so far allowed correlating the basicity and hydrophilic character of clay catalysts with surface interaction with 17α-Ethinylestradiol (EE2) during ozonation in water. The clay catalysts...
Catalytic ozonation for the total mineralization of bisphenol-A (BPA) from aqueous solution was investigated in the presence of various silica-based catalysts such as mesoporous silica, acid-activated bentonite (HMt) and montmorillonite-rich materials (Mt) ion-exchanged with Na+ and Fe2+ cations (NaMt and Fe(II)Mt). The effects of the catalyst surface were studied by correlating the hydrophilic character and catalyst dispersion in the aqueous media to the silica content and BPA conversion. To the best of our knowledge, this approach has barely been tackled so far. Acid-activated and iron-free clay catalysts produced complete BPA degradation in short ozonation times. The catalytic activity was found to strongly depend on the hydrophilic character, which, in turn, depends on the Si content. Catalyst interactions with water and BPA appear to promote hydrophobic adsorption in high Si catalysts. These findings are of great importance because they allow tailoring silica-containing catalyst properties for specific features of the waters to be treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.