Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. Results: Infants (n¼5609) born at mean (standard deviation [SD]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO 2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]¼1.16; 95% confidence interval [CI], 1.04e1.28
Bullous pemphigoid (BP) is a subepidermal blistering skin disease, which has shown a strong association with neurological diseases in epidemiological studies. The BP autoantigens BP180 and BP230 are expressed in the cutaneous basement membrane and the central nervous system. Using BP180 and BP230 ELISA assays and immunoblotting against BP180, we analyzed the IgG reactivity in the sera of 115 patients with Alzheimer's disease (AD) and 40 neurologically healthy controls. BP180 autoantibodies were found in 18% of patients with AD, whereas only 3% of controls had positive results (P = 0.019). BP230 values were higher and more often elevated in patients with AD than controls, but not significantly. None of the positive AD sera that recognized the full-length human BP180 in immunoblotting reacted with the cutaneous basement membrane in indirect immunofluorescence analysis. Moreover, a retrospective evaluation of the hospital records of the patients with AD revealed neither BP diagnosis nor BP-like symptoms. Interestingly, increased BP180-NC16A autoantibody values correlated with cognitive decline measured by mini-mental state examination scores, but not with the concentration of AD biomarkers in cerebrospinal fluid. Our findings further the understanding of the role of BP180 as a shared autoantigen in neurodermatological interactions and the association between BP and neurodegenerative diseases.
Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human, and to predict drug concentration-time profiles in multiple CNS compartments on available human data of four drugs (acetaminophen, oxycodone, morphine and phenytoin). Values of the system-specific parameters in the rat CNS PBPK model were replaced by corresponding human values. The contribution of active transporters for the four selected drugs was scaled based on differences in expression of the pertinent transporters in both species. Model predictions were evaluated with available pharmacokinetic (PK) data in human brain extracellular fluid and/or cerebrospinal fluid, obtained under physiologically healthy CNS conditions (acetaminophen, oxycodone, and morphine) and under pathophysiological CNS conditions where CNS physiology could be affected (acetaminophen, morphine and phenytoin). The human CNS PBPK model could successfully predict their concentration-time profiles in multiple human CNS compartments in physiological CNS conditions within a 1.6-fold error. Furthermore, the model allowed investigation of the potential underlying mechanisms that can explain differences in CNS PK associated with pathophysiological changes. This analysis supports the relevance of the developed model to allow more effective selection of CNS drug candidates since it enables the prediction of CNS target-site concentrations in humans, which are essential for drug development and patient treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.