Allometric scaling on the basis of bodyweight raised to the power of 0.75 (AS0.75) is frequently used to scale size-related changes in plasma clearance (CLp) from adults to children. A systematic assessment of its applicability is undertaken for scenarios considering size-related changes with and without maturation processes. A physiologically-based pharmacokinetic (PBPK) simulation workflow was developed in R for 12,620 hypothetical drugs. In scenario one, only size-related changes in liver weight, hepatic blood flow, and glomerular filtration were included in simulations of ‘true’ paediatric CLp. In a second scenario, maturation in unbound microsomal intrinsic clearance (CLint,mic), plasma protein concentration, and haematocrit were also included in these simulated ‘true’ paediatric CLp values. For both scenarios, the prediction error (PE) of AS0.75-based paediatric CLp predictions was assessed, while, for the first scenario, an allometric exponent was also estimated based on ‘true’ CLp. In the first scenario, the PE of AS0.75-based paediatric CLp predictions reached up to 278 % in neonates, and the allometric exponent was estimated to range from 0.50 to 1.20 depending on age and drug properties. In the second scenario, the PE sensitivity to drug properties and maturation was higher in the youngest children, with AS0.75 resulting in accurate CLp predictions above 5 years of age. Using PBPK principles, there is no evidence for one unique allometric exponent in paediatric patients, even in scenarios that only consider size-related changes. As PE is most sensitive to the allometric exponent, drug properties and maturation in younger children, AS0.75 leads to increasingly worse predictions with decreasing age.Electronic supplementary materialThe online version of this article (doi:10.1007/s40262-016-0436-x) contains supplementary material, which is available to authorized users.
EudraCT reference number: 2011-000125-76.
IntroductionAcetaminophen (paracetamol) is mainly metabolized via glucuronidation and sulphation, while the minor pathway through cytochrome P450 (CYP) 2E1 is held responsible for hepatotoxicity. In obese patients, CYP2E1 activity is reported to be induced, thereby potentially worsening the safety profile of acetaminophen. The aim of this study was to determine the pharmacokinetics of acetaminophen and its metabolites (glucuronide, sulphate, cysteine and mercapturate) in morbidly obese and non-obese patients.MethodsTwenty morbidly obese patients (with a median total body weight [TBW] of 140.1 kg [range 106–193.1 kg] and body mass index [BMI] of 45.1 kg/m2 [40–55.2 kg/m2]) and eight non-obese patients (with a TBW of 69.4 kg [53.4–91.7] and BMI of 21.8 kg/m2 [19.4–27.4]) received 2 g of intravenous acetaminophen. Fifteen blood samples were collected per patient. Population pharmacokinetic modelling was performed using NONMEM.ResultsIn morbidly obese patients, the median area under the plasma concentration–time curve from 0 to 8 h (AUC0–8h) of acetaminophen was significantly smaller (P = 0.009), while the AUC0–8h ratios of the glucuronide, sulphate and cysteine metabolites to acetaminophen were significantly higher (P = 0.043, 0.004 and 0.010, respectively). In the model, acetaminophen CYP2E1-mediated clearance (cysteine and mercapturate) increased with lean body weight [LBW] (population mean [relative standard error] 0.0185 L/min [15 %], P < 0.01). Moreover, accelerated formation of the cysteine and mercapturate metabolites was found with increasing LBW (P < 0.001). Glucuronidation clearance (0.219 L/min [5 %]) and sulphation clearance (0.0646 L/min [6 %]) also increased with LBW (P < 0.001).ConclusionObesity leads to lower acetaminophen concentrations and earlier and higher peak concentrations of acetaminophen cysteine and mercapturate. While a higher dose may be anticipated to achieve adequate acetaminophen concentrations, the increased CYP2E1-mediated pathway may preclude this dose adjustment.Electronic supplementary materialThe online version of this article (doi:10.1007/s40262-015-0357-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.