Hyperspectral sensor systems play a key role in the automation of work processes in the farming industry. Non-invasive measurements of plants allow for an assessment of the vitality and health state and can also be used to classify weeds or infected parts of a plant. However, one major downside of hyperspectral cameras is that they are not very cost-effective. In this paper, we show, that for specific tasks, multispectral systems with only a fraction of the wavelength bands and costs of a hyperspectral system can lead to promising results for regression and classification tasks. We conclude that for the ongoing automation efforts in the context of cognitive agriculture reduced multispectral systems are a viable alternative.
Dynamic Vision Sensors differ from conventional cameras in that only intensity changes of individual pixels are perceived and transmitted as an asynchronous stream instead of an entire frame. The technology promises, among other things, high temporal resolution and low latencies and data rates. While such sensors currently enjoy much scientific attention, there are only little publications on practical applications. One field of application that has hardly been considered so far, yet potentially fits well with the sensor principle due to its special properties, is automatic visual inspection. In this paper, we evaluate current state-of-the-art processing algorithms in this new application domain. We further propose an algorithmic approach for the identification of ideal time windows within an event stream for object classification. For the evaluation of our method, we acquire two novel datasets that contain typical visual inspection scenarios, i.e., the inspection of objects on a conveyor belt and during free fall. The success of our algorithmic extension for data processing is demonstrated on the basis of these new datasets by showing that classification accuracy of current algorithms is highly increased. By making our new datasets publicly available, we intend to stimulate further research on application of Dynamic Vision Sensors in machine vision applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.