.We propose an approach for millimeter wave radar targets classification based on the concatenated spectrogram and range-Doppler features. A publicly available dataset that contains raw single radar data for fast- and slow-walking people is utilized. First, the received channels are summed to obtain a higher signal-to-noise ratio. Next, range-Doppler and spectrogram plots are obtained after the two-dimensional fast Fourier transform of raw radar signals. Then the spectrogram dataset is normalized and augmented using a mixup algorithm and fed into the proposed encoder and decoder structures sequentially for the classification task. In addition to the bidirectional long short-term memory layer, dropout and batch normalization layers are added for regularization in the proposed network. Parameter optimization is done for each network for a certain number of parameters. Finally, the results show that with the proposed approach, a 0.961 mean F1 score is obtained, and it outperformed some state-of-the-art methods, such as convolutional neural networks (CNNs) and hybrid CNNs–long short-term memory networks. An ablation study of the proposed method is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.