CitationRomano J-M, Gülçür M, Garcia-Giron A et al (2019) Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures. Applied Surface Science. 476: 850-860.
Rights
ABSTRACT.The paper reports an investigation on the mechanical durability of textured thermoplastic surfaces together with their respective wetting properties. A range of laser-induced topographies with different aspect ratios from micro to nanoscale were fabricated on tool steel inserts using an ultrashort pulsed near infrared laser. Then, through micro-injection moulding the topographies were replicated onto polypropylene surfaces and their durability was studied systematically. In particular, the evolution of topographies on textured thermoplastic surfaces together with their wetting properties were investigated after undergoing a controlled mechanical abrasion, i.e.reciprocating dry and wet cleaning cycles. The obtained empirical data was used both to study the effects of cleaning cycles and also to identify cleaning procedures with a minimal impact on textured thermoplastic surfaces and their respective wetting properties. In addition, the use of 3D areal parameters that are standardised and could be obtained readily with any state-of-the-art surface characterisation system are discussed for monitoring the surfaces' functional response.
Link to publication on Research at Birmingham portal
General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
CitationBaruffi F, Gülçür M, Calaon M et al (2019) Correlating nanoscale surface replication accuracy and cavity temperature in micro-injection moulding using in-line process control and highspeed thermal imaging. Journal of Manufacturing Processes. 47: 367-381.Rights
This paper discusses micromanufacturing process quality proxies called “process fingerprints” in micro-injection moulding for establishing in-line quality assurance and machine learning models for Industry 4.0 applications. Process fingerprints that we present in this study are purely physical proxies of the product quality and need tangible rationale regarding their selection criteria such as sensitivity, cost-effectiveness, and robustness. Proposed methods and selection reasons for process fingerprints are also justified by analysing the temporally collected data with respect to the microreplication efficiency. Extracted process fingerprints were also used in a multiple linear regression scenario where they bring actionable insights for creating traceable and cost-effective supervised machine learning models in challenging micro-injection moulding environments. Multiple linear regression model demonstrated %84 accuracy in predicting the quality of the process, which is significant as far as the extreme process conditions and product features are concerned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.