Two simple and accurate spectrophotometric methods for determination of timolol and enalapril maleate are described. The first method is based on chelate formation with palladium(II) chloride in buffered medium. The second method is based on the formation of the colored complex between palladium(II), eosin, and the two cited drugs using methylcellulose as surfactant to increase the solubility and intensity of the formed complexes. Under optimum conditions the complexes showed maximum absorption at 369.4 nm and 362.8 nm for timolol and enalapril maleate, respectively, in the first method and 552.2 and 550.6 nm for the second method. Apparent molar absorptivities were 1.8 x 10(3) and 1.3 x 10(3) and Sandell's sensitivities were 5.9 x 10(-4) and 2.7 x 10(-4) for timolol and enalapril maleate in the first method; in the second method molar absorptivities were 2.8 x 10(4) and 1.1 x 10(4) while Sandell's constants were 9.1 x 10(-3) and 2.3 x 10(-3) for timolol and enalapril maleate. The solutions of the complexes obeyed Beer's law in the concentration ranges 20-200 micro g mL(-1) and 50-300 micro g mL(-1) for timolol and enalapril maleate, respectively. In the second method, because the reaction was more sensitive the ranges were reduced to 1.6-16 micro g mL(-1) for timolol 8-56 micro g mL(-1) for enalapril maleate. The proposed methods were applied to the determination of the two drugs in their pharmaceutical formulation.
Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method.
Two sensitive and simple spectrophotometric methods are developed for the determination of trazodone HCl, famotidine, and diltiazem HCl in pure and pharmaceutical preparations. The methods are based on the oxidation of the cited drugs with iron(III) in acidic medium. The liberated iron(II) reacts with 1,10-phenanthroline (method A) and the ferroin complex is colorimetrically measured at 510 nm against reagent blank. Method B is based on the reaction of the liberated Fe(II) with 2,2-bipyridyl to form a stable colored complex with lambda(max )at 520 nm. Optimization of the experimental conditions was described. Beer's law was obeyed in the concentration range of 1-5, 2-12, and 12-32 microg mL(-1) for trazodone, famotidine, and diltiazem with method A, and 1-10 and 8-16 microg mL(-1) for trazodone and famotidine with method B. The apparent molar absorptivity for method A is 1.06x10(5), 2.9x10(4), 1.2x10(4) and for method B is 9.4x10(4 )and 1.6x10(4), respectively. The suggested procedures could be used for the determination of trazodone, famotidine, and diltiazem, both in pure and dosage forms without interference from common excipients.
KEYWORDSSeveral simple, sensitive, accurate and inexpensive spectrophotometric and spectrofluorimetric methods were developed for the determination of propafenone HCl and diltiazem HCl using 4-chloro-7-nitrobenzofurazan (NBD-Cl) accompanied with kinetic study, either in pure form or in pharmaceutical preparations. In this work, the cited drugs react with (NBD-Cl) in presence of borate buffer of pH = 7.6 at a fixed time of 30 minutes on thermostated water bath at (75-80 °C). The absorbance was measured using spectrophotometric technique at 489 and 481 nm for propafenone HCl and diltiazem HCl, respectively, or by using spectrofluorimetric technique after dilution at the specific wavelength of excitation and emission.The calibration curves were linear in the range of 4-44, 16-96 µg/mL when using spectrophotometric method, and 0.4-3.6, 1.6-8.8 µg/mL when spectrofluorimetric method was applied for propafenone HCl and diltiazem HCl, respectively. The limit of quantitation and the limit of detection were also calculated. The methods were applied successfully to commercial dosage form and can be further applied for their determination on a large scale in quality control laboratories. The obtained results statistically agreed with those obtained by reference methods. The determination of the studied drugs by the fixed concentration and rate constant methods is feasible with the calibration equations obtained, but the fixed time method proves to be more applicable.Diltiazem HCl Propafenone HCl Spectroflourimetric Spectrophotometric Kinetic determination 4-Chloro-7-nitrobenzofurazan
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.