The variations between different individuals in the xenobiotic metabolizing enzymes' activity were shown to modify susceptibility to childhood acute lymphoblastic leukemia (ALL). Polymorphisms associated with genes coding for the glutathione S-transferase (GST) enzyme were known to affect the metabolism of different carcinogens. The aim of this study was to evaluate the influence of the GSTM1 and GSTT1 deletion polymorphisms, and the GSTP1 Ile105Val single nucleotide polymorphism (SNP) on the susceptibility to childhood ALL. The study was conducted in 95 children with ALL and 190 healthy control subjects from the Turkish population. The data revealed no difference in the prevalence of the GSTM1 and GSTT1 null genotypes between the childhood ALL patients and the controls. No association was found between GSTP1 Ile105Val variants and the susceptibility to childhood ALL, separately or in combination. Our findings suggested that the status of heritable GST polymorphism might not influence the risk of developing childhood ALL. Studies with a larger sample size are needed to evaluate and confirm the validity of our results.
Normal tissue reactions are therapy limiting factor for the effectiveness of the radiotherapy in cancer patients. DNA repair and apoptosis are estimated to be critical players of adverse effects in response to radiotherapy. Our aim was to define the association of DNA repair (ERCC1 and XPC) and apoptotic (BCL2, CASP3 and NFKB1) gene expression, DNA damage levels, apoptosis changes and DNA repair gene variations with the risk of acute side effects in breast cancer patients. The study included 100 women with newly diagnosed breast cancer; an experimental case group (n=50) with acute side effects and the control group (n=50) without side effects. Gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Micronucleus (MN) and 8-hydroxy-2"²-deoxyguanosine (8-OHdG) assays were performed to compare the DNA damage levels. Apoptosis was examined by TDT-mediated dUTP-biotin nick end-labeling (TUNEL) staining. ERCC1 rs3212986 and XPC rs3731055 polymorphisms were genotyped by real-time PCR technique. No significantly correlation of DNA repair and apoptosis gene expression and DNA damage levels with acute side effects in response to radiotherapy. Also, there was no association between apoptosis levels and acute effects. ERCC1 rs3212986 CC genotype showed a protective effect against radiotherapy-induced acute reactions (p<0.001; OR: 0.21; 95% CI= 0.08-0.52). Our results suggest that apoptosis and DNA damage levels are not associated with acute radiosensitivity. DNA repair may affect the risk of acute reactions. Further studies are needed to validate the current findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.