In the present work, CdS nanoparticles were synthesized and analyzed for use in fuel cell applications. The X-ray diffraction investigation showed that CdS possesses a cubic polycrystalline structure. For the (111) plane, the average values of mean crystallite size, microstrain, and dislocation density were calculated and found to be 1.935 nm, 0.0758, and 0.267 nm−2. The average crystallite size was additionally calculated and found to be 2.02 nm using the modified Scherrer’s plot. The observed blue shift in the photoluminescence of CdS is caused by the quantum size impact of the nanocrystalline structure. A broad emission band at 590 nm is produced by the recombination of a hole in the valence band of CdS with an electron confined in a sulfur vacancy. The average Cd/S ratio is good and comparable, according to the EDS analysis, which is close to the theoretical values and almost exactly fits the ideal structure. A thermogravimetry diagram was used to establish the thermal stability of CdS across a wide range of temperatures. Fuel cell application features peaks were investigated by the cyclic voltammetry of CdS under various conditions. The linear sweep voltammetry was used to analyze the electrochemical performance of CdS electrodes in fuel cells. Electrochemical impedance spectroscopy (EIS) was also used and the results confirmed that nickel substrate is regarded as being superior to stainless steel in terms of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.