Obesity and hypertension are common risk factors for cardiovascular disease whereas an active lifestyle is considered as protective. However, the interaction between high physical activity and hypertension is less clear. Therefore, this study investigates the impact of high physical activity on the muscular and hepatic expression of glucose transporters (Glut), uncoupling proteins (UCPs), and proprotein convertase subtilisin/kexin type 9 (PCSK9) in spontaneously hypertensive rats (SHRs). Twenty-four female rats (12 normotensive rats and 12 SHRs) were divided into a sedentary control and an exercising group that had free access to running wheels at night for 10 months. Blood samples were taken and blood pressure was determined. The amount of visceral fat was semi-quantitatively analyzed and Musculus gastrocnemius, Musculus soleus, and the liver were excised. Acute effects of free running wheel activity were analyzed in 15 female SHRs that were sacrificed after 2 days of free running wheel activity. M. gastrocnemius and M. soleus differed in their mRNA expression of UCP-2, UCP-3, GLUT-4, and PCSK9. Hypertension was associated with lower levels of UCP-2 and PCSK9 mRNA in the M. gastrocnemius, but increased expression of GLUT-1 and GLUT-4 in the M. soleus. Exercise down-regulated UCP-3 in the M. soleus in both strains, in the M. gastrocnemius only in normotensives. In SHRs exercise downregulated the expression of UCP-2 in the M. soleus. Exercise increased the expression of GLUT-1 in the M. gastrocnemius in both strains, and that of GLUT-4 protein in the M. soleus, whereas it increased the muscle-specific expression of PCSK9 only in normotensive rats. Effects of exercise on the hepatic expression of cholesterol transporters were seen only in SHRs. As an acute response to exercise increased expressions of the myokine IL-6 and that of GLUT-1 were found in the muscles. This study, based on transcriptional adaptations in striated muscles and livers, shows that rats perform long-term metabolic adaptations when kept with increased physical activity. These adaptations are at least in part required to stabilize normal protein expression as protein turnover seems to be modified by exercise. However, normotensive and hypertensive rats differed in their responsiveness. Based on these results, a direct translation from normotensive to hypertensive rats is not possible. As genetic differences between normotensive humans and patients with essential hypertension are likely to be present as well, we would expect similar differences in humans that may impact recommendations for non-pharmacological interventions.
High physical activity is important to optimize the function of adipose tissue. Dysfunctional adipose tissue contributes to the development of metabolic stress, chronic inflammation, and hypertension. To improve our current understanding of the interaction between physical exercise and adipose tissue, we analyzed the effect of 10 months voluntary running wheel activity of rats on uncoupling protein (UCP) 1 negative white adipose tissue (visceral and subcutaneous adipose tissue, VWAT and SWAT). Analysis was performed via RT-PCR and immunoblot from adipose tissues depicted from adult normotensive and spontaneously hypertensive female rats. UCP1 negative VWAT differed from UCP1 positive WAT and brown adipose tissue (BAT) from interscapular fat depots, by lacking the expression of UCP1 and low expression of Cidea, a transcriptional co-activator of UCP1. High physical activity affected the expression of five genes in SWAT (Visfatin (up), RBP5, adiponectin, Cidea, and Nrg4 (all down)) but only one gene (Visfatin, up) in VWAT. Furthermore, the expression of these genes is differentially regulated in VWAT and SWAT of normotensive and spontaneously hypertensive rats (SHR) under sedentary conditions (UCP2) and exercise (Visfatin, Cidea, Nrg4). Keeping the animals after 6 months of voluntary exercise under observation for an additional period of 4 months without running wheels, Visfatin, Cidea, and Nrg4 were stronger expressed in VWAT of SHRs than in sedentary control rats. In summary, our study shows that SWAT is more responsible to exercise than VWAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.