BackgroundSmartphones are often vilified for negatively influencing well-being and contributing to stress. However, these devices may, in fact, be useful in times of stress and, in particular, aid in stress recovery. Mobile apps that deliver evidence-based techniques for stress reduction, such as heart rate variability biofeedback (HRVB) training, hold promise as convenient, accessible, and effective stress-reducing tools. Numerous mobile health apps that may potentially aid in stress recovery are available, but very few have demonstrated that they can influence health-related physiological stress parameters (eg, salivary biomarkers of stress). The ability to recover swiftly from stress and reduce physiological arousal is particularly important for long-term health, and thus, it is imperative that evidence is provided to demonstrate the effectiveness of stress-reducing mobile health apps in this context.ObjectiveThe purpose of this research was to investigate the physiological and psychological effects of using a smartphone app for HRVB training following a stressful experience. The efficacy of the gamified Breather component of the Happify mobile health app was examined in an experimental setting.MethodsIn this study, participants (N=140) underwent a laboratory stressor and were randomly assigned to recover in one of three ways: with no phone present, with a phone present, with the HRBV game. Those in the no phone condition had no access to their phone. Those in the phone present condition had their phone but did not use it. Those in the HRVB game condition used the serious game Breather on the Happify app. Stress recovery was assessed via repeated measures of salivary alpha amylase, cortisol, and self-reported acute stress (on a 1-100 scale).ResultsParticipants in the HRVB game condition had significantly lower levels of salivary alpha amylase during recovery than participants in the other conditions (F2,133=3.78, P=.03). There were no significant differences among the conditions during recovery for salivary cortisol levels or self-reported stress.ConclusionsThese results show that engaging in a brief HRVB training session on a smartphone reduces levels of salivary alpha amylase following a stressful experience, providing preliminary evidence for the effectiveness of Breather in improving physiological stress recovery. Given the known ties between stress recovery and future well-being, this study provides a possible mechanism by which gamified biofeedback apps may lead to better health.
Pain disability is a primary target of treatment for chronic pain. Self-compassion shows promise as an intervention to reduce pain disability, but mechanisms linking self-compassion with less pain disability remain to be identified. This study examined two potential mechanisms, health self-efficacy and future self-identification (FSI), as parallel mediators of the relation between self-compassion and pain disability. Adults ( N = 188; Mage = 40.34, SD = 11.53; 70.9% female) screened for chronic pain were recruited through online convenience sampling. Participants completed self-report measures of demographics, health status, and primary study variables. Self-compassion was positively associated with FSI and self-efficacy, but only self-efficacy was found to mediate the negative relation between self-compassion and pain disability, such that self-compassion was associated with higher self-efficacy, which was associated with less pain disability. Future experimental and longitudinal studies can establish whether the negative relation between self-compassion and pain disability is causal and mediated via health self-efficacy.
BACKGROUND Smartphones are often vilified for negatively influencing well-being and contributing to stress. However, these devices may, in fact, be useful in times of stress and, in particular, aid in stress recovery. Mobile apps that deliver evidence-based techniques for stress reduction, such as heart rate variability biofeedback (HRVB) training, hold promise as convenient, accessible, and effective stress-reducing tools. Numerous mobile health apps that may potentially aid in stress recovery are available, but very few have demonstrated that they can influence health-related physiological stress parameters (eg, salivary biomarkers of stress). The ability to recover swiftly from stress and reduce physiological arousal is particularly important for long-term health, and thus, it is imperative that evidence is provided to demonstrate the effectiveness of stress-reducing mobile health apps in this context. OBJECTIVE The purpose of this research was to investigate the physiological and psychological effects of using a smartphone app for HRVB training following a stressful experience. The efficacy of the gamified Breather component of the Happify mobile health app was examined in an experimental setting. METHODS In this study, participants (N=140) underwent a laboratory stressor and were randomly assigned to recover in one of three ways: with no phone present, with a phone present, with the HRBV game. Those in the <italic>no phone</italic> condition had no access to their phone. Those in the <italic>phone present</italic> condition had their phone but did not use it. Those in the <italic>HRVB game</italic> condition used the serious game Breather on the Happify app. Stress recovery was assessed via repeated measures of salivary alpha amylase, cortisol, and self-reported acute stress (on a 1-100 scale). RESULTS Participants in the <italic>HRVB game</italic> condition had significantly lower levels of salivary alpha amylase during recovery than participants in the other conditions (F<sub>2,133</sub>=3.78, <italic>P</italic>=.03). There were no significant differences among the conditions during recovery for salivary cortisol levels or self-reported stress. CONCLUSIONS These results show that engaging in a brief HRVB training session on a smartphone reduces levels of salivary alpha amylase following a stressful experience, providing preliminary evidence for the effectiveness of Breather in improving physiological stress recovery. Given the known ties between stress recovery and future well-being, this study provides a possible mechanism by which gamified biofeedback apps may lead to better health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.