The main objective of the present study was to investigate the hemo and immune compatibility of gliadin nanoparticles as a function of particle size. Gliadin nanoparticles of different size were prepared using a modified antisolvent nanoprecipitation method. The hemolytic potential of gliadin nanoparticles was evaluated using in vitro hemolysis assay. Phagocytic uptake of gliadin nanoparticles was studied using rat polymorphonuclear (PMN) leukocytes and murine alveolar peritoneal macrophage (J774) cells. In vivo immunogenicity of gliadin nanoparticles was studied following subcutaneous administration in mice. Gliadin nanoparticles were non-hemolytic irrespective of particle size and hence compatible with blood components. In comparison to positive control zymosan, gliadin nanoparticles with a size greater than 406 ± 11 nm showed higher phagocytic uptake in PMN cells, while the uptake was minimal with smaller nanoparticles (127 ± 8 nm). Similar uptake of gliadin nanoparticles was observed in murine alveolar peritoneal macrophages. Anti-gliadin IgG antibody titers subsequent to primary and secondary immunization of gliadin nanoparticles in mice were in the increasing order of 406 ± 11 nm < 848 ± 20 nm < coarse suspension). On the other hand, gliadin nanoparticles of 127 ± 8 nm in size did not elicit immunogenic response. Phagocytosis and immunogenicity of gliadin nanoparticles are strongly influenced by particle size. The results of this study can provide useful information for rational design of protein-based nanomaterials in drug delivery applications.
Diabetes has emerged as a major threat to human life globally. Genomic studies have found a significant link between the Pro12Ala polymorphism of the PPAR-γ2 gene with incidence as well as occurrence of the risk of metabolic syndrome. The present study was aimed at assessing the PPAR-γ2 variant in an Asian Indian cohort of type 2 diabetes patients and its correlation with metabolic parameters. The present case-control study involved 100 type 2 diabetic patients and 100 asymptomatic healthy volunteers enrolled in random. Assessment of demographic factors and biochemical parameters were done for all enrolled. In addition, genotyping for the Pro12Ala (CCA to GCA) polymorphism was done by polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) technology. The genotyping study detected the frequency of the CC genotype (Pro12Pro) to be higher in frequency in comparison to the heterozygous CG genotype in both, cases and controls. The homozygous GG genotype (Ala12Ala) was not detected in any of the cases or controls assessed. Biochemical analysis of the levels of malondialdehyde (MDA) detected a significant increase (p < 0.0001). Additionally, increase in levels of fasting and postprandial glucose, total cholesterol, triglycerides, and parameters of the liver and renal function tests were detected. This study detected the PPAR-γ2 to be a significant biomarker for type 2 diabetes mellitus.
Bernard–Soulier syndrome is a rare autosomal recessive bleeding disorder and has a low incidence. Bernard–Soulier syndrome is caused by the deficiency of glycoprotein GPIb-V-IX complex, a receptor for von Willebrand factor and is characterized by thrombocytopenia, giant platelets and bleeding tendency. We are reporting three members of a same family with variable phenotypic clinical presentation. The index case is a 20-year-old boy who has a frequent presentation with epistaxis, and low platelet counts (25 × 109/l). He had been hospitalized multiple times and received platelet transfusions. His brother and cousin reported bleeding symptoms with less frequent medical intervention. Genetic analysis by next-generation sequencing identified a homozygous GP1BB variant (c.423C>A:p.Cys141Ter), which segregated amongst the family members. The results led us to an improved insight into the disease for this family with variable phenotypic expression, in addition to the identification of a variant for further structural and functional characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.