The finite-element method ͑FEM͒ has been employed to study the structural behavior of the fiber-reinforced polymer ͑FRP͒ bridge deck. The numerical results were verified with the field-test results provided by New York State Department of Transportation. Fully coupled thermal-stress analyses were conducted using the FEM to predict the failure mechanisms and the "fire resistance limit" of the superstructure under extreme thermal loading conditions. Furthermore, damage simulations of the FRP deck as a result of snow and ice plowing process were performed to investigate any possibility of bridge failure after damage occurs. Thermal simulations showed that FRP bridge decks are highly sensitive to the effect of elevated temperatures. The FRP deck approached the fire resistance limit at early stages of the fire incident under all cases of fire scenarios. The damage simulations due to the snow plowing showed minimal possibility of bridge failure to take place under the worst-case damage scenario when the top 5 mm of the FRP deck surface was removed. The results of both phases of simulations provide an insight into the safety and the reliability of the FRP systems after the stipulated damage scenarios were considered. Moreover, this paper provides discussions concerning the recommended immediate actions necessary to repair the damaged region of FRP deck panels and possible use of the bridge after the damage incident.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.