In the context of major global environmental challenges such as food security, climate change, fresh water scarcity and biodiversity loss, the protection and the sustainable management of soil resources in Africa are of paramount importance. To raise the awareness of the general public, stakeholders, policy makers and the science community to the importance of soil in Africa, the Joint Research Centre of the European Commission has produced the Soil Atlas of Africa. To that end, a new harmonised soil map at the continental scale has been produced. The steps of the construction of the new area-class map are presented, the basic information being derived from the Harmonized World Soil Database (HWSD). We show how the original data were updated and modified according to the World Reference Base for Soil Resources classification system. The corrections concerned boundary issues, areas with no information, soil patterns, river and drainage networks, and dynamic features such as sand dunes, water bodies and coastlines. In comparison to the initial map derived from HWSD, the new map represents a correction of 13% of the soil data for the continent. The map is available for downloading.
Soil microbes are considered to be an important N pool in dry tropical croplands, which are nutrient poor. To evaluate the N contribution of soil microbes to plant growth in a dry tropical cropland, we conducted a maize cultivation experiment in Tanzania using different land management treatments (no input, plant residue application, fertilizer application, plant residue and fertilizer application, and non-cultivated plots). Over 104 experimental days, we periodically evaluated the microbial biomass N and C, plant N uptake, microbial respiration in situ and inorganic N in the soil. A significant amount of inorganic N was lost in all of the treatment plots as a result of leaching during the initial 60 days and inorganic N remained low thereafter (20-35 kg N ha )1 : 0-15 cm), whereas soil microbial respiration substantially decreased because of soil drying after 60 days (grain-forming stage). During the grain-forming stage (60-104 days), we found a distinct effect of plant N uptake on soil microbial dynamics, although we did not observe an obvious effect of plant residue and ⁄ or fertilizer application; microbial biomass N decreased drastically from 63-71 to 18-33 kg N ha )1 and the microbial biomass C : N ratio simultaneously increased (>10-fold) in all maize-cultivated plots; these features were not observed in the non-cultivated plot. Plant N uptake over the same period was 26.6-55.2 kg N ha )1, which was roughly consistent with the decrease in microbial biomass N. These results indicate that strong competition for N occurred between soil microbes and plants over this period and N uptake by plants prevented microbial growth. Thus, we concluded that soil microbes contribute to plant growth by serving as a N source during the grain-forming stage in dry tropical cropland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.