A strategy for the synthesis of PtRh alloy 3D porous nanostructures by controlled aggregation of nanoparticles in oleylamine is presented. The atomic ratio between the two components (Pt and Rh) is tuned by varying the concentration of precursor salts accommodating the oxidation of methanol. The morphology of PtRh alloy nanostructure is controlled by elevating the temperature of the reaction system to 240 °C. The prepared 3D porous nanostructures provide a high degree of electrochemical activity and good durability toward the methanol oxidation reaction compared to those of the commercial Pt/C (E‐TEK) and PtRh nanoparticles. Therefore, the 3D alloy porous nanostructures provide a good opportunity to explore their catalytic properties for methanol oxidation.
Metastasis accounts for 90% of the mortality associated with breast cancer. Upregulated expression of members of the lysyl oxidase (LOX) family of secreted copper amine oxidases catalyzes the crosslinking of collagens and elastin in the extracellular matrix. LOXs are linked to the development and metastatic progression of breast cancers. Accordingly, aberrant expression of LOX-like 2 (LOXL2) is observed in poorly differentiated, high-grade tumors and is predictive of diseases recurrence, and for decreased overall patient survival. Therefore, LOXL2 expression may serve as a biomarker for breast cancer. Mechanistically, hydrogen peroxide is produced as a byproduct of LOXL2 when using an appropriate substrate, lysine. We exploited this chemistry to generate a revolutionary gold-based electrochemical biosensor capable of accurately detecting nanomolar quantities of LOXL2 in mouse blood, and in human blood samples. Two different sources of the blood samples obtained from breast cancer patients were used in this study indicating the applicability of detecting LOXL2 in breast cancers patients. Limited numbers of urine specimens from breast cancer patients were also tested. Collectively, all of these tests show the promise and potential of this biosensor for detecting LOXL2 as a surrogate biomarker of breast cancer. This work is described in WO 052962 A1 (2014)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.