Ambient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 micro m in diameter (PM(2.5)) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure and the involved mechanisms remain uncertain. We measured personal PM(2.5) and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 micro g/m(3) for personal PM(2.5) exposure, 9.2 micro g/m(3) for background PM(2.5) concentration, and 8.1 X 10(-6)/m for personal carbon black exposure. Personal carbon black exposure and PLAAS concentration were positively associated (p < 0.01), whereas an association between personal PM(2.5) exposure and PLAAS was only of borderline significance (p = 0.061). A 3.7% increase in MDA concentrations per 10 micro g/m(3) increase in personal PM(2.5) exposure was found for women (p < 0.05), whereas there was no significant relationship for the men. Similarly, positive associations between personal PM(2.5)exposure and both RBC and hemoglobin concentrations were found only in women (p < 0.01). There were no significant relationships between background PM(2.5) concentration and any of the biomarkers. This suggests that exposure to particles in moderate concentrations can induce oxidative stress and increase RBCs in peripheral blood. Personal exposure appears more closely related to these biomarkers potentially related to cardiovascular disease than is ambient PM(2.5) background concentrations.
Oximes (RRC=NOH) are nitrogen-containing chemical constituents that are formed in species representing all kingdoms of life. In plants, oximes are positioned at important metabolic bifurcation points between general and specialized metabolism. The majority of plant oximes are amino acid-derived metabolites formed by the action of a cytochrome P450 from the CYP79 family. Auxin, cyanogenic glucosides, glucosinolates, and a number of other bioactive specialized metabolites including volatiles are produced from oximes. Oximes with the E configuration have high biological activity compared with Z-oximes. Oximes or their derivatives have been demonstrated or proposed to play roles in growth regulation, plant defense, pollinator attraction, and plant communication with the surrounding environment. In addition, oxime-derived products may serve as quenchers of reactive oxygen species and storage compounds for reduced nitrogen that may be released on demand by the activation of endogenous turnover pathways. As highly bioactive molecules, chemically synthesized oximes have found versatile uses in many sectors of society, especially in the agro- and medical sectors. This review provides an update on the structural diversity, occurrence, and biosynthesis of oximes in plants and discusses their role as key players in plant general and specialized metabolism.
Cyanogenic glucosides are a class of specialized metabolites widespread in the plant kingdom. Cyanogenic glucosides are αhydroxynitriles, and their hydrolysis releases toxic hydrogen cyanide, providing an effective chemical defense against herbivores. Eucalyptus cladocalyx is a cyanogenic tree, allocating up to 20% of leaf nitrogen to the biosynthesis of the cyanogenic monoglucoside, prunasin. Here, mass spectrometry analyses of E. cladocalyx tissues revealed spatial and ontogenetic variations in prunasin content, as well as the presence of the cyanogenic diglucoside amygdalin in flower buds and flowers. The identification and biochemical characterization of the prunasin biosynthetic enzymes revealed a unique enzyme configuration for prunasin production in E. cladocalyx. This result indicates that a multifunctional cytochrome P450 (CYP), CYP79A125, catalyzes the initial conversion of l-phenylalanine into its corresponding aldoxime, phenylacetaldoxime; a function consistent with other members of the CYP79 family. In contrast to the single multifunctional CYP known from other plant species, the conversion of phenylacetaldoxime to the α-hydroxynitrile, mandelonitrile, is catalyzed by two distinct CYPs. CYP706C55 catalyzes the dehydration of phenylacetaldoxime, an unusual CYP reaction. The resulting phenylacetonitrile is subsequently hydroxylatedby CYP71B103 to form mandelonitrile. The final glucosylation step to yield prunasin is catalyzed by a UDP-glucosyltransferase, UGT85A59. Members of the CYP706 family have not been reported previously to participate in the biosynthesis of cyanogenic glucosides, and the pathway structure in E. cladocalyx represents an example of convergent evolution in the biosynthesis of cyanogenic glucosides in plants.www.plantphysiol.org on August 1, 2020 -Published by Downloaded from Metabolite data were analyzed in SigmaPlot (version 13.0) using oneway ANOVA. Normality (Kolmogorov-Smirnov) and equal variance (Brown-Forsythe) were tested to cutoffs of P > 0.02 and P > 0.04, respectively, and when assumptions were not met, the data were transformed by natural logarithm. Pearson correlation was used to analyze gene expression. PK, Svendsen I, Møller BL (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin: cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem 275: 1966-1975 Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36: 393-405 Bassard JE, Møller BL, Laursen T (2017) Assembly of dynamic P450-mediated metabolons: order versus chaos. Curr Mol Biol Rep 3: 37-51 Bjarnholt N, Li B, D'Alvise J, Janfelt C (2014) Mass...
Cyanogenic glycosides form part of a binary plant defense system that, upon catabolism, detonates a toxic hydrogen cyanide bomb. In seed plants, the initial step of cyanogenic glycoside biosynthesis—the conversion of an amino acid to the corresponding aldoxime—is catalyzed by a cytochrome P450 from the CYP79 family. An evolutionary conundrum arises, as no CYP79s have been identified in ferns, despite cyanogenic glycoside occurrence in several fern species. Here, we report that a flavin-dependent monooxygenase (fern oxime synthase; FOS1), catalyzes the first step of cyanogenic glycoside biosynthesis in two fern species (Phlebodium aureum and Pteridium aquilinum), demonstrating convergent evolution of biosynthesis across the plant kingdom. The FOS1 sequence from the two species is near identical (98%), despite diversifying 140 MYA. Recombinant FOS1 was isolated as a catalytic active dimer, and in planta, catalyzes formation of an N-hydroxylated primary amino acid; a class of metabolite not previously observed in plants.
The Eucalyptus genus is a hyper-diverse group of long-lived trees from the Myrtaceae family, consisting of more than 700 species. Eucalyptus are widely distributed across their native Australian landscape and are the most widely planted hardwood forest trees in the world. The ecological and economic success of Eucalyptus trees is due, in part, to their ability to produce a plethora of specialized metabolites, which moderate abiotic and biotic interactions. Formylated phloroglucinol compounds (FPCs) are an important class of specialized metabolites in the Myrtaceae family, particularly abundant in Eucalyptus . FPCs are mono- to tetra-formylated phloroglucinol based derivatives, often with an attached terpene moiety. These compounds provide chemical defense against herbivory and display various bioactivities of pharmaceutical relevance. Despite their ecological and economic importance, and continued improvements into analytical techniques, FPCs have proved challenging to study. Here we present a simple and reliable method for FPCs extraction, identification and quantification by UHPLC-DAD-ESI-Q-TOF-MS/MS. The method was applied to leaf, flower bud, and flower samples of nine different eucalypt species, using a small amount of plant material. Authentic analytical standards were used to provide high resolution mass spectra and fragmentation patterns. A robust method provides opportunities for future investigations into the identification and quantification of FPCs in complex biological samples with high confidence. Furthermore, we present for the first time the tissue-based localization of FPCs in stem, leaf, and flower bud of Eucalyptus species measured by mass spectrometry imaging, providing important information for biosynthetic pathway discovery studies and for understanding the role of those compounds in planta .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.