Simultaneous excitation-ionization of helium to the He + (2p) ionic state by electron impact is studied experimentally and theoretically. Electron-photon angular correlations measured at an incident electron energy of 200 eV and electron scattering angles between 5 • and 30 • are in reasonable agreement with theoretical predictions. The He + (2p) double-differential cross section shows structure due to interference effects arising from n 3 autoionization states decaying into this channel. The He + (2p) emission cross section from threshold to 300 eV is also reported and compared with previous data.
This paper describes theoretical modelling of electrostatic lenses based on 3, 4 and 5 closely spaced cylindrical electrodes, respectively. In each case, modelling is carried out numerically using commercial packages SIMION and LENSYS, and a variety of performance parameters are obtained. These include the magnification, the 3 rd order spherical and chromatic aberration coefficients. Special cases such as zoom lens (i.e., lenses whose magnification may be changed without losing focus) are considered. Results are obtained as a function of the ratios of the electrode lengths and gaps, and as a function of ratios of the controlling voltages.As a result, it is shown that how a multi-element lens system can be operated with the whole focal properties in a useful mode for using in experimental studies.
A specially designed hemispherical deflector analyzer (HDA) with 5-element input lens having a movable entry position R0 suitable for electron energy analysis in atomic collisions was constructed and tested. The energy resolution of the HDA was experimentally determined for three different entry positions R0 = 84, 100, 112 mm as a function of the nominal entry potential V(R0) under pre-retardation conditions. The resolution for the (conventional) entry at the mean radius R0 = 100 mm was found to be a factor of 1.6-2 times worse than the resolution for the two (paracentric) positions R0 = 84 and 112 mm at particular values of V(R0). These results provide the first experimental verification and a proof of principle of the utility of such a paracentric HDA, while demonstrating its advantages over the conventional HDA: greater dispersion with reduced angular aberrations resulting in better energy resolution without the use of any additional fringing field correction electrodes. Supporting simulations of the entire lens plus HDA spectrometer are also provided and mostly found to be within 20%-30% of experimental values. The paracentric HDA is expected to provide a lower cost and∕or more compact alternative to the conventional HDA particularly useful in modern applications utilizing a position sensitive detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.