The COVID-19 pandemic is one of the most challenging healthcare crises during the 21 st century. As the virus continues to spread on a global scale, the majority of efforts have been on the development of vaccines and the mass immunization of the public. While the daily case numbers were following a decreasing trend, the emergent of new virus mutations and variants still pose a significant threat. As economies start recovering and societies start opening up with people going back into office buildings, schools, and malls, we still need to have the ability to detect and minimize the spread of COVID-19. Individuals with COVID-19 may show multiple symptoms such as cough, fever, and shortness of breath. Many of the existing detection techniques focus on symptoms having the same equal importance. However, it has been shown that some symptoms are more prevalent than others. In this paper, we present a multimodal method to predict COVID-19 by incorporating existing deep learning classifiers using convolutional neural networks and our novel probability-based weighting function that considers the prevalence of each symptom. The experiments were performed on an existing dataset with respect to the three considered modes of coughs, fever, and shortness of breath. The results show considerable improvements in detection of COVID-19 using our weighting function when compared to an equal weighting function.
Deep learning (DL) methods have the potential to be used for detecting COVID-19 symptoms. However, the rationale for which DL method to use and which symptoms to detect has not yet been explored. In this paper, we present the first performance study which compares various convolutional neural network (CNN) architectures for the autonomous preliminary COVID-19 detection of cough and/or breathing symptoms. We compare and analyze residual networks (ResNets), visual geometry Groups (VGGs), Alex neural networks (AlexNet), densely connected networks (DenseNet), squeeze neural networks (SqueezeNet), and COVID-19 identification ResNet (CIdeR) architectures to investigate their classification performance. We uniquely train and validate both unimodal and multimodal CNN architectures using the EPFL and Cambridge datasets. Performance comparison across all modes and datasets showed that the VGG19 and DenseNet-201 achieved the highest unimodal and multimodal classification performance. VGG19 and DensNet-201 had high F1 scores (0.94 and 0.92) for unimodal cough classification on the Cambridge dataset, compared to the next highest F1 score for ResNet (0.79), with comparable F1 scores to ResNet for the larger EPFL cough dataset. They also had consistently high accuracy, recall, and precision. For multimodal detection, VGG19 and DenseNet-201 had the highest F1 scores (0.91) compared to the other CNN structures (≤0.90), with VGG19 also having the highest accuracy and recall. Our investigation provides the foundation needed to select the appropriate deep CNN method to utilize for non-contact early COVID-19 detection.
When we think of “soft” in terms of socially assistive robots (SARs), it is mainly in reference to the soft outer shells of these robots, ranging from robotic teddy bears to furry robot pets. However, soft robotics is a promising field that has not yet been leveraged by SAR design. Soft robotics is the incorporation of smart materials to achieve biomimetic motions, active deformations, and responsive sensing. By utilizing these distinctive characteristics, a new type of SAR can be developed that has the potential to be safer to interact with, more flexible, and uniquely uses novel interaction modes (colors/shapes) to engage in a heighted human–robot interaction. In this perspective article, we coin this new collaborative research area as SoftSAR. We provide extensive discussions on just how soft robotics can be utilized to positively impact SARs, from their actuation mechanisms to the sensory designs, and how valuable they will be in informing future SAR design and applications. With extensive discussions on the fundamental mechanisms of soft robotic technologies, we outline a number of key SAR research areas that can benefit from using unique soft robotic mechanisms, which will result in the creation of the new field of SoftSAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.