Aim: This study aimed to search for novel cellulolytic isolates with high cellulase titre for the production of fuels and chemicals. Methodology: The yeast isolate YES5 isolated from the forest soil was screened for cellulase production. The cellulase activity of YES5 was optimized via RSM. The saccharification potential of YES5 using Napier biomass as substrate was evalauted. Results: The maximum cellulase activity obtained after optimizing pH, temperature, and incubation period was 35.70 U. A reliable statistical model was developed for maximizing the cellulase activity in YES5 Trichosporon asahii. The cellulase activity was 23.87U, when carbon source in CMC medium was replaced by Napier biomass. The maximum saccharification potential of 33.15% was observed on 3rd day. Interpretation: The study of optimizing the media composition of Trichosporon asahii cellulase using Napier biomass, a natural source of carbon for maximizing the cellulase production via RSM, is first of its kind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.