Covid-19 is a virus that was first discovered in China, which has the impact of mild and severe respiratory infections such as pneumonia. Pneumonia is inflammation and consolidation of lung tissue due to infectious agents. Generally pneumonia has a high mortality rate, as do Covid-19 patients. For now, it is very difficult to distinguish between Pneumonia and Covid-19, due to the high similarity of X-Ray image results. The high similarity has an impact on the difficulty of difference between Pneumonia and Covid-19 patients. This research aims to be able to different Pneumonia and Covid-19 patients based on texture analysis of the Gray Level Co-Occurrence Matrix using Modified k-Nearest Neighbour as a classifier. The calculations used in the Gray Level Co-Occurrence Matrix method are Contrast, Correlation, Energy, and Homogeneity which will be input for the Modified k-Nearest Neighbour classifier. The results showed that the highest accuracy is when the value of K = 3 using Manhattan Distance and 80%:20% data percentage, which is 87.5%. For the values of K = 7 and K = 9 there is no change in accuracy, so it can be concluded that the value of K that affects accuracy only occurs at the values of K = 3 and K = 5. Then, the higher the K value, the lower the resulting accuracy.
Indonesia is an agricultural country that is famous for its wealth of spices and herbal plants. Herbal plants themselves have thousands of species. There are 40,000 species of herbal plants that have been known in the world, and around 30,000 species to be in Indonesia. Herbal plants are a source of new active compounds that have pharmacological and therapeutic effects, both when used directly and through various extraction processes. Herbal plants can be distinguished from the shape of the leaves because each type of plant has different leaf features. Laboratory-based testing also requires skills in sample processing and data interpretation, in addition to timeconsuming procedures. Therefore, a simple and reliable herbal plant recognition technique is needed to quickly identify herbs, especially for those who are unable to use expensive analytical instrumentation. This study aims to identify types of herbal plants based on leaf images quickly and accurately using the Convolutional Neural Network method which is part of Deep Learning. This study uses several architectural models of Convolutional Neural Network to classify types of herbal plants. The best accuracy value with the VGG16 architecture is 90% with 93% precision, 90% recall, and 90% Fmeasure. The VGG16 architecture used epoch = 20, batch_size = 32, and validation_split = 0.2. The result show that CNN Algorithm with the VGG16 architecture is able to classify types of herbal plants with good accuracy.
Purpose: The identification and selection of food to be consumed are critical in determining the health quality of human life. Our diet and the illnesses we develop are closely linked. Public awareness of the significance of food quality has increased due to the rising prevalence of degenerative diseases such as obesity, heart disease, type 2 diabetes, hypertension, and cancer. This study aims to develop a model for food identification and identify aspects that can aid in food identification.Methods : This study employs the convolutional neural network (CNN) approach, which is used to identify food objects or images based on the detected features. The images of thirty-five different types of traditional, processed, and western foods were gathered as the study’s input data. The image data for each type of food was repeated 100 times to produce a total of 3500 images.. Using the color, shape, and texture information, the food image is retrieved. The hue, saturation, and value (HSV) extraction method for color features, the Canny extraction method for shape features, and the gray level co-occurrence matrix (GLCM) method for texture features, in that sequence, were used to evaluate the data in addition to the CNN classification method.Result:The simulation results show that the classification model’s accuracy and precision are 76% and 78%, respectively, when the CNN approach is used alone without the extraction method. The CNN classification model and HSV color extraction yielded an accuracy and precision of 51% and 55%, respectively. The CNN classification model with the Canny texture extraction method has an accuracy and precision of 20% and 20%, respectively, while the combined CNN and GLCM extraction methods have 67% and 69% success rates, respectively. According to the simulation results, the food classification and identification model that uses the CNN approach without the HSV, Canny, and GLCM feature extraction methods produces better results in terms of accuracy and precision model.Novelty: This research has the potential to be used in a variety of food identification applications, such as food and nutrition service systems, as well as to improve product quality in the food and beverage industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.