The specific rates of solvolysis of t-butyl fluoroformate (1) have been measured at 40.0 o C in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation, with incorporation of the solvent nucleophilicity and the solvent ionizing power, is applied. The actual values are very similar to those obtained in earlier studies of the solvolyses of isopropyl chloroformate and ethyl chlorothioformate in the more ionizing and least nucleophilic solvents, which are believed to proceed by an ionization pathway. The small negative values for the entropies of activation are consistent with the ionization nature of the proposed rate-determining step. These observations are also compared with those previously reported for the corresponding primary and secondary alkyl haloformate esters.
The specific rates of solvolysis of phenyl fluorothionoformate (PhOCSF, 1) have been determined in 22 pure and binary solvents at 10.0 o C. The extended Grunwald-Winstein equation has been applied to the specific rates of solvolysis of 1 over the full range of solvents. The sensitivities (l = 1.32 ± 0.13 and m = 0.39 ± 0.08) toward the changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are similar to those previously observed for solvolyses of acyl haloformate esters, consistent with the addition step of an additionelimination pathway being rate-determining. The large negative values for the entropies of activation are consistent with the bimolecular nature of the proposed rate-determining step. The results are compared with those reported earlier for phenyl chloroformate and chlorothionoformate esters and mechanistic conclusions are drawn.
Abstract:The specific rates of solvolysis of ethyl fluoroformate have been measured at 24.2 °C in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation is applied. The sensitivities to changes in the N T solvent nucleophilicity scale and the Y Cl solvent ionizing power scale, and the k F /k Cl values are very similar to those for solvolyses of n-octyl fluoroformate, consistent with the addition step of an addition-elimination pathway being rate-determining. For methanolysis, a solvent deuterium isotope effect of 3.10 is compatible with the incorporation of general-base catalysis into the substitution process. For five representative solvents, studies were made at several temperatures and activation parameters determined. The results are also compared with those reported earlier for ethyl chloroformate and mechanistic conclusions are drawn.
The specific rates of solvolysis of isobutyl fluoroformate (1) have been measured at 40.0 °C in 22 pure and binary solvents. These results correlated well with the extended Grunwald-Winstein (G-W) equation, which incorporated the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale. The sensitivities (l and m-values) to changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those observed previously for solvolyses of n-octyl fluoroformate, consistent with the additional step of an addition-elimination pathway being rate-determining. The solvent deuterium isotope effect value (kMeOH/kMeOD) for methanolysis of 1 was determined, and for solvolyses in ethanol, methanol, 80% ethanol, and 70% TFE, the values of the enthalpy and the entropy of activation for the solvolysis of 1 were also determined. The results are compared with those reported earlier for isobutyl chloroformate (2) and other alkyl haloformate esters and mechanistic conclusions are drawn.
Reactions of 2-methyl-2-chloroadamantane (1) in a variety of pure and binary solvents have been studied at various temperatures and pressures up to 80 MPa. The sensitivity (m) to changes in solvent ionizing power of the Grunwald-Winstein equation, and the activation volume (∆V ‡ ) are calculated from the specific rates. An excellent linear relationship (R = 0.997) for 1, log (k/k0) = 0.80YCl + 0.11, and the activation volume,were observed. These values are similar to those for solvolyses of 1-adamantyl halides over the full range of solvents, suggesting that the unimolecular mechanism involving ion pairs is rate-determining. These observations are also compared with those previously reported for the corresponding 1-adamantyl derivatives and chloroformate esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.