Mitochondrial function and ambulatory activity were monitored after feeding old rats acetyl-L-carnitine (ALCAR). Young (3-5 mo) and old (22-28 mo) rats were given a 1.5% (wt͞vol) solution of ALCAR in their drinking water for 1 mo, were sacrificed, and their liver parenchymal cells were isolated. ALCAR supplementation significantly reverses the age-associated decline of mitochondrial membrane potential, as assessed by rhodamine 123 staining. Cardiolipin, which declines significantly with age, is also restored. ALCAR increases cellular oxygen consumption, which declines with age, to the level of young rats. However, the oxidant production per oxygen consumed, as measured by 2,7-dichlorof luorescin f luorescence levels, is Ϸ30% higher than in untreated old rats. Cellular glutathione and ascorbate levels were nearly 30% and 50% lower, respectively, in cells from ALCARsupplemented old rats than in untreated old rats, further indicating that ALCAR supplementation might increase oxidative stress. Ambulatory activity in young and old rats was quantified as a general measure of metabolic activity. Ambulatory activity, defined as mean total distance traveled, in old rats is almost 3-fold lower than in young animals. ALCAR supplementation increases ambulatory activity significantly in both young and old rats, with the increase being larger in old rats. Thus, ALCAR supplementation to old rats markedly reverses the age-associated decline in many indices of mitochondrial function and general metabolic activity, but may increase oxidative stress.
Summary
Microtubules are organized by the centrosome, a dynamic organelle that exhibits changes in both size and number during the cell cycle. Here we show that SZY-20, a putative RNA-binding protein, plays a critical role in limiting centrosome size in C. elegans. SZY-20 localizes in part to centrosomes and in its absence centrosomes possess increased levels of centriolar and pericentriolar components including γ-tubulin and the centriole duplication factors ZYG-1 and SPD-2. These enlarged centrosomes possess normal centrioles, nucleate more microtubules, and fail to properly direct a number of microtubule-dependent processes. Depletion of ZYG-1 restores normal centrosome size and function to szy-20 mutants whereas loss of szy-20 suppresses the centrosome duplication defects in both zyg-1 and spd-2 mutants. Our results describe a pathway that determines centrosome size and implicate centriole duplication factors in this process.
Summary
Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffolding subunit PAA-1, and the B55 regulatory subunit SUR-6, function together to positively regulate centriole assembly. In PP2A-SUR-6-depleted embryos, the levels of ZYG-1 and SAS-5 are reduced and the ZYG-1- and SAS-5-dependent recruitment of SAS-6 to the nascent centriole fails. We show that PP2A physically associates with SAS-5 in vivo, and that inhibiting proteolysis can rescue SAS-5 levels and the centriole duplication defect of PP2A-depleted embryos. Together our findings indicate that PP2A-SUR-6 promotes centriole assembly by protecting ZYG-1 and SAS-5 from degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.