SummaryIn rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analysed in order to evaluate the gene-tagging ef®ciency. The 3¢ end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identi®ed at the 3¢ end of the Ds in rice. Nearly 80% of Ds elements were excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds which underwent secondary transposition in the later cultures. Eight per cent of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybridization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds-mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a large scale mutagenesis using a heterologous Ac/Ds family in rice.
OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a "blade to sheath transformation" phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::DeltaOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles.
Among the four classes of chitinase, a class II chitinase had not yet been reported for rice. We have isolated and characterized a class II acidic chitinase, Rcht2, from rice (Oryza sativa L. cv. Cheongcheongbyeo). The protein consists of a single polypeptide chain of 261 amino acid residues and includes a putative signal sequence of 29 amino acids at its N-terminus. It has a calculated molecular mass of 27,642 Da and an isoelectric point of 5.56. The Rcht2 chitinase lacks the cysteine-rich and hinge domains in the N-terminal region of the protein, which is the criterion for its classification as a class II chitinase. Comparison of the genomic and the cDNA sequence revealed that the coding region of Rcht2 consist of three exons of 301, 112, and 370 bp separated by two introns of 89 and 984 bp. In suspension-cultured rice cells, the transcript level of Rcht2 was dramatically increased by treatment with both glycol chitin and fungal elicitor. The application of protein phosphatase 1 and 2A inhibitors, calyculin A and okadaic acid, effectively abolished the induction of Rcht2 in response to fungal elicitor. In contrast, the activation of Rcht2 transcript was not inhibited by both cycloheximide and protein kinase inhibitors. These results demonstrate that protein dephosphorylation events play a crucial role in the elicitor-mediated induction of Rcht2 in rice cells, while de novo protein synthesis is not required for induction.
Wheat dwarf virus (WDV) is a monocot-infecting geminivirus that replicates in infected tissue as double-stranded DNA. We evaluated whether the WDV vector system bearing Ds could be used as an effective insertional mutagen in rice. Molecular data showed that Ds was excised from WDV vectors once the WDV-carryin 8 Ds (WDV::Ds) and the 8enomic Ac vector were co-introduced into rice calli. Mature TO and T1 transgenic plants were analyzed for the distribution and inheritance of Ds inserts. Southern analysis indicated that the Ds elements excised from WDV vectors were stably inserted into 8enomes. The number of transposed Ds ranged from zero to three copies, among independent transformants. Meanwhile, untransposed Ds (WDV::Ds) were present in multiple-copies in genomes. Southern analysis of the selfed progeny of TO plants demonstrated that most WDV::Ds were co-segregated among siblings. This indicated that these elements were integrated into the same single loci. However, a few Ds were found to segregate independently from the majority of Ds. In this report, we discuss the efficiency of WDV vectors in generating multicopy Ds in rice genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.