The use of silver nanoparticles is one of the fastest growing product categories in the nanotechnology industry, with a focus on antimicrobial activity. However, thus far, toxicity data for silver nanoparticles are limited. In this study, we investigated the cytotoxic effects of silver nanoparticles (Ag NPs) and the pathway by which they affect A549 lung epithelial cells. The effects of Ag NPs on cell survival, cell cycle progression, and mRNA and protein alterations of selected cell cycle- and apoptosis-related genes were studied using formazan dye and LDH release assays, flow cytometric analysis, semi-quantitative RT-PCR, and Western blot analysis. Ag NPs reduced cell viability, increased LDH release, and modulated cell cycle distribution through the accumulation of cells at G2/M and sub-G1 phases (cell death), with a concurrent decrease in cells at G1. Ag NP treatment increased Bax and Bid mRNA levels and downregulated Bcl-2 and Bcl-w mRNAs in a dose-dependent manner. Furthermore, Ag NPs altered the mRNA levels of protein kinase C (PKC) family members. In particular, ectopic overexpression of PKCζ led to the enhancement of cellular proliferation and reduced sensitivity to Ag NPs in A549 cells. Together, these results suggest that Ag NPs induce strong toxicity and G2/M cell cycle arrest by a mechanism involving PKCζ downregulation in A549 cells.
Nuclear factor jB (NF-jB) is associated with the transcriptional activation of genes encoding chemokines, adhesion molecules, cytokines, and anti-apoptotic proteins, which are key components in immune responses and viral infection. Many viruses modulate NF-jB through numerous viral gene products to allow productive infections and immune escape. Here we report that herpes simplex virus-1 infected cell protein 27 (HSV-1 ICP27), an immediate early protein of HSV-1, represses NF-jB activity through binding to inhibitor of jB (IjBa), blocking phosphorylation and ubiquitination of IjBa, and stabilizing IjBa. These data may explain how NF-jB activity is regulated by ICP27 to escape immune responses during the very early period of HSV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.