Overall, RYGB produces greater and more predicted favourable changes in gut microbiota functional capacity than SG. An increase in Roseburia species was the only compositional change common to both types of surgery among those achieving diabetes remission.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism.
Deoxycytidine kinase (dCK) catalyzes the rate-limiting step of the deoxynucleoside salvage pathway in mammalian cells and plays a key role in the activation of several pharmacologically important nucleoside analogs. Using a highly specific polyclonal antibody raised against a C-terminal peptide of the human dCK, we analyzed its subcellular localization by Western blots of biochemically fractionated nuclear and cytoplasmic fractions as well as by in situ immunochemistry. Native dCK was found to be located mainly in the cytoplasm in several cell types, and the enzyme was more concentrated in the perinuclear and cellular membrane area. In contrast, when dCK was overexpressed in the cells, it was mainly located in the nucleus. The results demonstrate that native dCK is a cytoplasmic enzyme. However, it has the ability to enter the nucleus under certain conditions, suggesting the existence of a cytoplasmic retention mechanism that may have an important function in the regulation of the deoxynucleoside salvage pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.