Many efforts of curricula design have concentrated on expanding participation in K-12 CS education by introducing innovative approaches but few have focused on addressing longstanding equity issues through their choices of culturally relevant materials and activities. In this paper, we describe our efforts in using electronic textiles which include Arduino-based microcontrollers that are sewn with conductive thread on fabrics to connect actuators and sensors and create interactive wearables. We report on the implementation of an electronic textiles curricular unit in the Exploring Computer Science introductory computing course in 13 high schools involving 272 high school students largely from underrepresented groups in a major metropolitan school district. We examined two issues relevant to broadening equitable participation in CS: (1) students' changed perceptions of computing, and (2) students' depth of learning of computing, circuitry and crafting in the final project. Pre/post surveys on students' perceptions of computing showed positive, significant gains in students' self-confidence in solving CS problems, fascination with computing and ability to be creative with computing. Teacher evaluations of students' final projects revealed robust learning in the areas of basic programming and computational circuitry as well as strong learning across more challenging computational concepts, with room for growth. We discuss factors that impacted student outcomes and outline steps for further analysis.
The development of student identities—their interests in computer science, perceptions of the discipline, and sense of belonging in the field—is critical for broadening participation of underrepresented groups in computing. This paper reports on the design of portfolios in which two classes of high school students reflected on the process of making electronic textile projects. We examine how students expressed self-authorship in relation to computer science and how the use of reflective portfolios shaped students’ perceptions of computer science. In the discussion we consider how reflective portfolios can serve as ideational resources for computer science identity construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.