Since its initial identification in ticks in 2010, Jingmen tick virus (JMTV) has been described in cattle, rodents and primates. To better understand the diversity, evolution and transmission of JMTV, we sampled 215 ticks, 104 cattle bloods, 216 bats and 119 rodents in Wenzhou city, Zhejiang province, China, as well as 240 bats from Guizhou and Henan provinces. JMTV was identified in 107 ticks (from two species), 54 bats (11 species), eight rodents (three species), and 10 cattle, with prevalence levels of 49.8%, 11.8%, 6.7% and 9.6%, respectively, suggesting that bats may be a natural reservoir of JMTV. Phylogenetic analyses revealed that all the newly identified JMTVs were closely related to each other and to previously described viruses. Additionally, all tick and mammalian JMTV sampled in Wenzhou shared a consistent genomic structure, suggesting that the virus can co-circulate between ticks and mammals without observable variation in genome organization. All JMTVs sampled globally could be divided into two phylogenetic groups, Mantel tests suggested that geographic isolation, rather than host species, may be the main driver of JMTV diversity. However, the exact geographical origin of JMTV was difficult to determine, suggesting that this virus has a complex evolutionary history.
Diseases caused by Rickettsiales bacteria are a global public health problem. To better understand the diversity and origins of Rickettsiales infection in humans and animals, we sampled 134 febrile patients, 173 rodents and 43 shrews, as well as 358 ticks, from two cities in Jiangsu and Jiangxi provinces, China. Our data revealed a relatively high prevalence of scrub typhus cases in both localities. In addition, both serological tests and genetic analysis identified three patients infected with Anaplasma bovis, Rickettsia monacensis, and Orientia tsutsugamushi bacteria. Molecular epidemiological investigation revealed the co-circulation of multiple species of Rickettsiales bacteria in small mammals and ticks in both provinces, potentially including novel bacterial species. In sum, these data demonstrate the ongoing importance of Rickettsiales infection in China and highlight the need for the regular surveillance of local arthropods, mammals and humans.
Jingmen tick virus (JMTV) is a recently identified virus which provides an unexpected connection between segmented and unsegmented RNA viruses. Recent investigations reveal that JMTV including JMTV-like virus (Alongshan virus) could be associated with human disease, suggesting the significance of JMTV in public health. To better understand the genetic diversity and host range of JMTV, a total of 164 rodents representing 8 species were collected in Qapqal Xibe county of Xinjiang Uygur Autonomous Region, China, and were screened for JMTVs using RT-PCR. Consequently, JMTV was identified in 42 rodents including 23 Microtus arvalis voles (24.5%), 9 Apodemus uralensis mice (29.0%), 5 Mus musculus mice, 1 Rhombomys opimus gerbil, 1 Meriones tamariscinus gerbil, 1 Meriones libycus gerbil, 1 Cricetulus migratorius hamster and 1 Microtus gregalis vole. Interestingly, nearly complete genome sequences were successfully recovered from 7 JMTV positive samples. Although the newly identified rodent JMTVs were closely related to those previously identified in ticks from China, based on the phylogenetic analysis of the S1, S2 and S3 segments, the newly identified rodent viruses clustered into two genetic groups. One group comprised of viruses only found in M. arvalis, while another group included viruses from A. uralensis, C. migratorius and M. gregalis. However, all rodent viruses clustered together in the S4 tree. Considering rodents live in close proximity to humans, more efforts are needed to investigate the role of rodents in the evolution and transmission of JMTV in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.