Effective data interoperability and schedule analysis play a significant role in improving the management of prefabricated buildings. However, there is a lack of efficient strategies and comprehensive approaches for data interoperability and data-based automated schedule analysis. This paper intends to promote prefabricated buildings’ management by solving these two problems via developing an IFC-based framework consisting of three parts. Firstly, this framework proposed a mechanism to establish an IFC-based 4D construction management information model of prefabricated buildings. Furthermore, a non-relational database—graph database—is introduced to twin this model into a task-centered network to realize the interoperation of construction information among different participants. Finally, graph database-based strategies to update data, automatically analyze construction schedules and visualize the 4D construction management information model are described. The proposed framework is validated in a prefabricated engineering case. In this case, an IFC-based and graph database-based 4D construction management information model is established through IFC standard’s extension. The graph database-based analysis of the model automatically recognizes the engineering case’s critical path information, delay analysis information, and schedule network analysis information. It is illustrated that this framework can successfully establish a unified IFC-based information model of prefabricated buildings’ construction management to prompt effective data interoperability. In addition, the application of this IFC-based information model in graph database can automatically analyze the construction schedules to prevent possible delays in advance. In short, the significance of this paper is to innovatively propose an IFC-based and graph data-based information model to solve the difficulties of ineffective data interoperation and unautomated schedule analysis in prefabricated buildings’ construction management. This study can be the digital foundation of further IFC-based digital twin.
Currently, construction projects are getting more complex, applying more information and communication technologies (ICT), while few studies use real-time data to dynamically optimize construction. The purpose of this article is to study the current development status of the optimization applied dynamically in the construction phase and their potential for applying real data collected by ICT. This article reviews 72 relevant optimization methods and identified some of the ICT research studies that can provide them with dynamic data. The dynamic triggering mode of each research is first analyzed, then its dynamic way, dynamic data, data resource, optimization object, and method are identified and formulated. The results reveal the great value of dynamic optimization in dealing with the complicated and uncertain contextual conditions in construction. Different dynamic triggering modes have different affinities with real data. Then, through the analysis of ICT articles, the huge potential of these dynamic optimization methods in applying real data is shown. This paper points out the most practical dynamic mode for engineers or managers to continuously apply optimization methods to solve dynamic problems in construction, and put forward scientific questions for related researchers: How does one combine ICT with the event dynamics or uncertain parameters? Based on this, the research gap of this area is identified a conceptual solution is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.