It is known from the literature that freedom from macroscopic defects (voids) is an essential prerequisite for good mechanical properties of 3D-printed components manufactured using fused filament fabrication. The present study further shows that the morphology and mechanical properties of void free components are significantly influenced by the choice of process parameters.Components that were printed at low temperatures and high speeds show fair and inhomogeneous supermolecular morphology, clearly visible weld seams and a special flow-induced staggered structure of the individual strands laidup. At higher magnification in the optical microscope, transcrystalline structures are visible starting from the contact area between the strands, that is, crystallization has started at the interface between the strands and is moving forward towards the center of the strands. In contrast, the samples printed at high temperatures and low speeds show a homogeneous supermolecular morphology with overall larger spherulites and a higher degree of crystallinity and compared to the specimens printed with the low temperature/high speed-set much better mechanical properties. A numerical simulation of the temperature at the contact point of the strand emerging from the hot nozzle and the cooled strand neighbor agrees well with the measured behavior. The thermal simulation thus enables the temperature to be calculated at any point in time in the welding contact and thus access to the local thermal conditions during joining, cooling and the formation of the morphology.
In the present work, microfibrillar composites (MFCs) consisting of polypropylene (PP) and poly(ethylene terephthalate) (PET) were successfully produced by melt extrusion and cold stretching. The resulting filaments were then printed using fused filament fabrication. The morphological results demonstrate that the highly oriented PET fibrils after stretching are still well preserved in the printed components. Since the printing process defines the alignment of the fibrils in the final component the fibers can be perfectly adapted to the load paths. Comparative analyses of the mechanical properties reveal that the PET fibrils act as an effective reinforcement in the 3D printed components, resulting in the superior mechanical performance of the PP/PET MFCs compared to a PP/PET blend and a neat PP. Due to the combination of material and innovative processing, the study opens up a new way of using the morphology‐based enormous potential of polymer fibers for lightweight, cost‐effective and recyclable full polymer solutions in compact components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.