We report here a new readily cultured nonadherent hollow spheroidal epithelial tissue model: human nasal epithelial multicellular spheroids, prepared from brushings of human nasal epithelium in vivo. Although cultured cyst-like epithelial models developed from embryonic, transformed, or polypoid tissues have been reported previously, human nasal epithelial multicellular spheroids are derived from normal mature nontransformed human airway epithelial cells. In our studies, spheroids ranged in size from 50 to 700 microns diameter (averaging approximately 250 microns). Cells of the spheroid displayed morphological polarity and formed junctional complexes. Transcellular electrolyte transport may underlie the increase in spheroid size which occurred in culture. The ease and simplicity of the brushing and culture procedures reported here render normal and diseased human cell populations more readily accessible to investigation. We believe human nasal epithelial multicellular spheroids may have important applications in the study of electrolyte and fluid transport processes, ciliary motility, epithelial polarity, cellular metabolism, and drug cytotoxicity in normal and pathophysiological states of the human respiratory tract (e.g., cystic fibrosis).
Human airway epithelial cells were obtained by nasal brushing, thus avoiding the use of proteolytic enzymes for cell isolation. Whole-cell Cl- conductances were studied in these cells by means of the patch-clamp technique. During whole-cell recordings, cell swelling activated a Cl- conductance that was blocked by indanyloxyacetic acid (48 +/- 10% inhibition at 50 microM). The swelling-induced current outwardly rectified and showed inactivation at depolarizing voltages (> or = +60 mV) and activation at hyperpolarizing voltages (< or = -30 mV). The voltage sensitivity of current activation was approximately twice that of inactivation. Another Cl- current with different kinetics was observed when nonswollen airway cells were stimulated with ionomycin (2 microM) in the presence of 1 mM Ca2+. The Ca(2+)-induced current exhibited activation during depolarizing voltage steps (> or = +40 mV) and inactivation during hyperpolarizing voltage steps (< or = -40 mV). In contrast to the swelling-induced current, the activation of Ca(2+)-induced current was less sensitive to voltage compared with its inactivation. Tail current analysis suggested that Cl- channels having a linear current-voltage relation mediate the response to Ca2+. This study indicates that brushed human nasal epithelial cells possess Cl- conductances that are regulated by cell swelling and Ca2+ and that they represent a useful in vitro model for studying ion transport in epithelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.