Patient motion is inevitable in SPECT and PET due to the lengthy period of time patients are imaged. The authors hypothesized that the use of external-tracking devices which provide additional information on patient motion independent of SPECT data could be employed to provide a more robust correction than obtainable from data-driven methods. Therefore, the authors investigated the Vicon MX visual-tracking system ͑VTS͒ which utilizes near-infrared ͑NIR͒ cameras to stereo-image small retroreflective markers on stretchy bands wrapped about the chest and abdomen of patients during cardiac SPECT. The chest markers are used to provide an estimate of the rigid-body ͑RB͒ motion of the heart. The abdomen markers are used to provide a signal used to bin list-mode acquisitions as part of correction of respiratory motion of the heart. The system is flexible in that the layout of the cameras can be designed to facilitate marker viewing. The system also automatically adapts marker tracking to employ all of the cameras visualizing a marker at any instant, with visualization by any two being sufficient for stereo-tracking. Herein the ability of this VTS to track motion with submillimeter and subdegree accuracy is established through studies comparing the motion of Tc-99m containing markers as assessed via stereo-tracking and from SPECT reconstructions. The temporal synchronization between motion-tracking data and timing marks embedded in list-mode SPECT acquisitions is shown to agree within 100 ms. In addition, motion artifacts were considerably reduced in reconstructed SPECT slices of an anthropomorphic phantom by employing within iterative reconstruction the motion-tracking information from markers attached to the phantom. The authors assessed the number and placement of NIR cameras required for robust motion tracking of markers during clinical imaging in 77 SPECT patients. They determined that they were able to track without loss during the entire period of SPECT and transmission imaging at least three of the four markers on the chest and one on the abdomen bands 94% and 92% of the time, respectively. The ability of the VTS to correct motion clinically is illustrated for ten patients who volunteered to undergo repeat-rest imaging with the original-rest SPECT study serving as the standard against which to compare the success of correction. Comparison of short-axis slices shows that VTS-based motion correction provides better agreement with the original-rest-imaging slices than either no correction or the vendor-supplied software for motion correction on our SPECT system. Comparison of polar maps shows that VTS-based motioncorrection results in less numerical difference on average in the segments of the polar maps between the original-rest study and the second-rest study than the other two strategies. The difference was statistically significant for the comparison between VTS-based and clinical vendor-supplied software correction. Taken together, these findings suggest that VTS-based motion correction is superior to either no...
An important problem in computer vision is the determination of weights for multiple objective function optimization. This problem arises naturally in many reconstruction problems, where one wishes to reconstruct a function belonging to a constrained class of signals based upon noisy observed data. A common approach is to combine the objective functions into a single total cost function. The problem then is to determine appropriate weights for the objective functions. In this paper we propose techniques for automatically determining the weights, and discuss their properties. The Min Max Principle, which avoids the problems of extremely low or high weights, is introduced. Expressions are derived relating the optimal weights, objective function values, and total cost.
The DARPA Robotics Challenge (DRC) requires teams to integrate mobility, manipulation, and perception to accomplish several disaster-response tasks. We describe our hardware choices and software architecture, which enable human-in-the-loop control of a 28 degree-of-freedom ATLAS humanoid robot over a limited bandwidth link. We discuss our methods, results, and lessons learned for the DRC Trials tasks. The effectiveness of our system architecture was demonstrated as the WPI-CMU DRC Team scored 11 out of a possible 32 points, ranked seventh (out of 16) at the DRC Trials, and was selected as a finalist for the DRC Finals. C 2014 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.