Sustainable building practices are rooted in the need for reliable information on the long-term performance of building materials; specifically, the expected service-life of building materials, components, and assemblies. This need is ever more evident given the anticipated effects of climate change on the built environment and the many governmental initiatives world-wide focused on ensuring that structures are not only resilient at their inception but also, can maintain their resilience over the long-term. The Government of Canada has funded an initiative now being completed at the National Research Council of Canada’s (NRC) Construction Research Centre on “Climate Resilience of Buildings and Core Public infrastructure”. The outcomes from this work will help permit integrating climate resilience of buildings into guides and codes for practitioners of building and infrastructure design. In this paper, the impacts of climate change on buildings are discussed and a review of studies on the durability of building envelope materials and elements is provided in consideration of the expected effects of climate change on the longevity and resilience of such products over time. Projected changes in key climate variables affecting the durability of building materials is presented such that specifications for the selection of products given climate change effects can be offered. Implications in regard to the maintainability of buildings when considering the potential effects of climate change on the durability of buildings and its components is also discussed.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=c9b4fe05-3368-4351-9b80-70406ba86f94 http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=c9b4fe05-3368-4351-9b80-70406ba86f94 SynopsisAn investigation was conducted to establish the viability of blending Kraft lignin (L), a naturally occurring, readily available polymer resource, with polyurethane-(PU) based sealants.The sealants were tested in a detailed program where lignin-sealant blends, having blend ratios varying between 0 and 20 pbw L, were prepared on substrates of aluminum, mortar, and wood, and subjected to laboratory control (C), artificial weathering (AW), and natural weathering (NW) conditions. Results of tension testing showed that generally, lignin acts as a reinforcing agent which adds rigidity to the polymeric matrix, as indicated by the increase in toughness and modulus of blended sealants with the addition of lignin. In addition, the curing mode of PU, as determined by sequence hardness testing, was modified with the addition of lignin.
Buildings and homes in Canada will be exposed to unprecedented climatic conditions in the future as a consequence of global climate change. To improve the climate resiliency of existing and new buildings, it is important to evaluate their performance over current and projected future climates. Hygrothermal and whole building simulation models, which are important tools for assessing performance, require continuous climate records at high temporal frequencies of a wide range of climate variables for input into the kinds of models that relate to solar radiation, cloud-cover, wind, humidity, rainfall, temperature, and snow-cover. In this study, climate data that can be used to assess the performance of building envelopes under current and projected future climates, concurrent with 2 °C and 3.5 °C increases in global temperatures, are generated for 11 major Canadian cities. The datasets capture the internal variability of the climate as they are comprised of 15 realizations of the future climate generated by dynamically downscaling future projections from the CanESM2 global climate model and thereafter bias-corrected with reference to observations. An assessment of the bias-corrected projections suggests, as a consequence of global warming, future increases in the temperatures and precipitation, and decreases in the snow-cover and wind-speed for all cities.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=07269c67-f972-47fc-8946-f8fc5a78c40d http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=07269c67-f972-47fc-8946-f8fc5a78c40d The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42 LIGNIN AND ITS POLYBLENDS ABSTRACTLignin, one of the most abundant biopolymers, is a renewable, cheap source with great possibilities for use as a component in polymeric systems. In spite of many research efforts, its potential hasn't been exploited. Recent developments in the domain of lignin and its derivatives focus on the possibilities of their use in polymeric systems. This paper shows some recent data obtained by using lignin in poIyblends with silicones, acrylics, polyurethanes, epoxy, and PVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.