Neutron sensors capable of real-time measurement of neutrons in high-flux environments are necessary for tests aimed at demonstrating the performance of experimental nuclear reactor fuels and materials in material test reactors (MTRs). In-core Micro-Pocket Fission Detectors (MPFDs) have been studied at Kansas State University for many years. Previous MPFD prototypes were successfully built and tested with promising results. Efforts are now underway to develop advanced MPFDs with radiation-resistant, high-temperature materials capable of withstanding irradiation test conditions in high performance material and test reactors. Stackable MPFDs have been designed, built, and successfully demonstrated as in-core neutron sensors. Advances in the electrodeposition and measurement of neutron reactive material, along with refinements to composition optimization simulations, have enhanced the capabilities of contemporary MPFDs.
Preparation of thin U-and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl-and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be-0.62 V to-0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.
Refinement of the class A I B II C V materials continue as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gasfilled 3 He and 10 BF 3 detectors. The 6 Li(n,t) 4 He reaction yields a total Q value of 4.78 MeV, larger than 10 B, and easily identified above background radiations. Hence, devices composed of either natural Li (nominally 7.5% 6 Li) or enriched 6 Li (usually 95% 6 Li) may provide a semiconductor material for compact high efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, A I B II C V , known as Nowotny-Juza compounds, are known for their desirable cubic crystal structure. Starting material was synthesized by equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterization. In the present work, a static vacuum sublimation of synthesized LiZnAs loaded in a quartz vessel was performed to help purify the synthesized material. The chemical composition of the sublimed material and remains material was confirmed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Lithium was not detected in the sublimed material, however, near stoichiometric amounts of each constituent element were found in the remains material for LiZnAs. X-ray diffraction phase identification scans of the remains material and sublimed material were compared, and further indicated the impurity materials were removed from the synthesized materials. The remaining powder post the sublimation process showed characteristics of a higher purity ternary compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.