We have employed recently developed blind modification search techniques to generate the most comprehensive map of post-translational modifications (PTMs) in human lens constructed to date. Three aged lenses, two of which had moderate cataract, and one young control lens were analyzed using multidimensional liquid chromatography mass spectrometry. In total, 491 modification sites in lens proteins were identified. There were 155 in vivo PTM sites in crystallins: 77 previously reported sites and 78 newly detected PTM sites. Several of these sites had modifications previously undetected by mass spectrometry in lens including carboxymethyl lysine (+58 Da), carboxyethyl lysine (+72 Da), and an arginine modification of +55 Da with yet unknown chemical structure. These new modifications were observed in all three aged lenses but were not found in the young lens. Several new sites of cysteine methylation were identified indicating this modification is more extensive in lens than previously thought. The results were used to estimate the extent of modification at specific sites by spectral counting. We tested the long-standing hypothesis that PTMs contribute to age-related loss of crystallin solubility by comparing spectral counts between the water-soluble and water-insoluble fractions of the aged lenses and found that the extent of deamidation was significantly increased in the water-insoluble fractions. On the basis of spectral counting, the most abundant PTMs in aged lenses were deamidations and methylated cysteines with other PTMs present at lower levels.
The human whole saliva proteome was investigated using two-dimensional liquid chromatography (2-DLC). The 2-DLC study was able to identify, with high confidence, 102 proteins including most known salivary proteins (35), and a large number of common serum proteins (67). Peptides from proline-rich proteins, abundant in saliva, had unusual cleavage sites and were frequently only partially tryptic. Three proteins not previously observed in human saliva were also detected. Significantly greater numbers of identified proteins, including high molecular weight, low molecular weight, and proline-rich proteins, were found with 2-DLC compared to previously reported two-dimensional gel electrophoresis studies.
Analysis of shotgun proteomics datasets requires techniques to distinguish correct peptide identifications from incorrect identifications, such as linear discriminant functions and target/decoy protein databases. We report an efficient, flexible proteomic analysis workflow pipeline that implements these techniques to control both peptide and protein false discovery rates. We demonstrate its performance by analyzing two-dimensional liquid chromatography separations of lens proteins from human, mouse, bovine, and chicken lenses. We compared the use of International Protein Index databases to UniProt databases and no-enzyme SEQUEST searches to tryptic searches. Sequences present in the International Protein Index databases allowed detection of several novel crystallins. An alternate start codon isoform of βA4 was found in human lens. The minor crystallin γN was detected for the first time in bovine and chicken lenses. Chicken γS was identified and is the first member of the γ-crystallin family observed in avian lenses.Electronic supplementary materialThe online version of this article (doi:10.1007/s12177-009-9042-6) contains supplementary material, which is available to authorized users.
Identifying deamidated peptides using low-resolution mass spectrometry is difficult because traditional database search programs cannot accurately detect modified peptides when the mass differences are only 0.984 Da. In this study, we utilized differential reversed-phase elution behavior of deamidated and corresponding unmodified peptide forms to significantly improve deamidation detection on a low-resolution LCQ ion trap instrument. We also improved the mass measurements of unmodified and deamidated peptide forms by averaging survey scans across each chromatogram peak. Tryptic digests of a series of normal (3-day old, 2-year old, 18-year old, 35-year old, and 70-year old) and cataractous (93-year old) human lens samples were used to produce large numbers of potentially deamidated peptides. The complex peptide mixtures were separated by strong cation exchange (SCX) chromatography followed by reversed-phase (RP) chromatography. Synthetic peptides were used to show that unmodified and deamidated peptides coeluted during the SCX separation and were completely resolved with the RP conditions used. Retention time shifts (RTS) and mass differences (DeltaM) of deamidated lens peptides and their corresponding unmodified forms were manually determined for the 70-year old lens sample. These values were used to assign correct or incorrect deamidation identifications from SEQUEST searches where deamidation was specified as a variable modification. Manual validation of SEQUEST identifications from synthetic peptides, 3-day old, and 70-year old samples had an overall 42% deamidation detection accuracy. Filtering SEQUEST identifications using RTS and DeltaM constraints resulted in>93% deamidation detection accuracy. An algorithm was developed to automate this method, and 72 Crystallin deamidation sites, 18 of which were not previously reported in human lens tissue, were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.