Otologic surgery often involves a mastoidectomy, which is the removal of a portion of the mastoid region of the temporal bone, to safely access the middle and inner ear. The surgery is challenging because many critical structures are embedded within the bone, making them difficult to see and requiring a high level of accuracy with the surgical dissection instrument, a high-speed drill. We propose to automate the mastoidectomy portion of the surgery using a compact, bone-attached robot. The system described in this paper is a milling robot with four degrees-of-freedom (DOF) that is fixed to the patient during surgery using a rigid positioning frame screwed into the surface of the bone. The target volume to be removed is manually identified by the surgeon pre-operatively in a computed tomography (CT) scan and converted to a milling path for the robot. The surgeon attaches the robot to the patient in the operating room and monitors the procedure. Several design considerations are discussed in the paper as well as the proposed surgical workflow. The mean targeting error of the system in free space was measured to be 0.5 mm or less at vital structures. Four mastoidectomies were then performed in cadaveric temporal bones, and the error at the edges of the target volume was measured by registering a postoperative computed tomography (CT) to the pre-operative CT. The mean error along the border of the milled cavity was 0.38 mm, and all critical anatomical structures were preserved.
Hypothesis-An image-guided robotic system can safely perform the bulk removal of bone during the translabyrinthine approach to vestibular schwannoma (VS).Background-The translabyrinthine approach to VS removal involves extensive manual milling in the temporal bone to gain access to the internal auditory canal (IAC) for tumor resection. This bone removal is time consuming and challenging due to the presence of vital anatomy (e.g. facial nerve) embedded within the temporal bone. A robotic system can use pre-operative imaging and segmentations to guide a surgical drill to remove a prescribed volume of bone, thereby preserving the surgeon for the more delicate work of opening the IAC and resecting the tumor.Methods-Fresh human cadaver heads were used in the experiments. For each trial, the desired bone resection volume was planned on a pre-operative computed tomography (CT) image, the steps in the proposed clinical workflow were undertaken, and the robot was programmed to mill the specified volume. A post-operative CT scan was acquired for evaluation of the accuracy of the milled cavity and examination of vital anatomy.Results-In all experimental trials, the facial nerve and chorda tympani were preserved. The root mean squared surface accuracy of the milled cavities ranged from 0.23 to 0.65 mm and the milling time ranged from 32.7 to 57.0 min. Conflicts of interest:The authors do not have any conflicts of interest. HHS Public Access Author Manuscript Author ManuscriptAuthor Manuscript Author ManuscriptConclusion-This work shows feasibility of using a robot-assisted approach for VS removal surgery. Further testing and system improvements are necessary to enable clinical translation of this technology.
This paper presents a novel miniature robotic endoscope that is small enough to pass through the Eustachian tube and provide visualization of the middle ear (ME). The device features a miniature bending tip previously conceived of as a small-scale robotic wrist that has been adapted to carry and aim a small chip-tip camera and fiber optic light sources. The motivation for trans-Eustachian tube ME inspection is to provide a natural-orifice-based route to the ME that does not require cutting or lifting the eardrum, as is currently required. In this paper, we first perform an analysis of the ME anatomy and use a computational design optimization platform to derive the kinematic requirements for endoscopic inspection of the ME through the Eustachian tube. Based on these requirements, we fabricate the proposed device and use it to demonstrate the feasibility of ME inspection in an anthropomorphic model, i.e. a 3D-printed ME phantom generated from patient image data. We show that our prototype provides > 74% visibility coverage of the sinus tympani, a region of the ME crucial for diagnosis, compared to an average of only 6.9% using a straight, non-articulated endoscope through the Eustachian Tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.