Partial Fourier reconstruction algorithms exploit the redundancy in magnetic resonance data sets so that half of the data is calculated during image reconstruction rather than acquired. The conjugate synthesis, Margosian, homodyne detection, Cuppen and POCS algorithms are evaluated using spatial frequency domain analysis to show their characteristics and where limitations may occur. The phase correction used in partial Fourier reconstruction is equivalent to a convolution in the frequency domain and the importance of accurately implementing this convolution is demonstrated. New reconstruction approaches, based on passing the partial data through a phase correcting, finite impulse response (FIR), digital filter are suggested. These FIR and MoFIR algorithms have a speed near that of the Margosian and homodyne detection reconstructions, but with a lower error; close to that of the Cuppen/POCS iterative approaches. Quantitative analysis of the partial Fourier algorithms, tested with three phase estimation techniques, are provided by comparing artificial and clinical data reconstructed using full and partial Fourier techniques.
The modeling of data is an alternative to conventional use of the fast Fourier transform (FFT) algorithm in the reconstruction of magnetic resonance (MR) images. The application of the FFT leads to artifacts and resolution loss in the image associated with the effective window on the experimentally-truncated phase encoded MR data. The transient error modeling method treats the MR data as a subset of the transient response of an infinite impulse filter (H(z) = B(z)IA(z)). Thus, the data are approximated by a deterministic autoregressive moving average (ARMA) model. The algorithm for calculating the filter coefficients is described. It is demonstrated that using the filter coefficients to reconstruct the image removes the truncation artifacts and improves the resolution. However, determining the autoregressive (AR) portion of the ARMA filter by algorithms that minimize the forward and backward prediction errors (e.g., Burg) leads to significant image degradation. The moving average (MA) portion is determined by a computationally efficient method of solving a finite difference equation with initial values. Special features of the MR data are incorporated into the transient error model. The sensitivity to noise and the choice of the best model order are discussed. MR images formed using versions of the transient error reconstruction (TERE) method and the conventional FFT algorithm are compared using data from a phantom and a human subject. Finally, the computational requirements of the algorithm are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.