Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅) π-stacks of radicals, respectively. We show that the regular π-stacks are not potential energy minima but average structures arising from a dynamic inter-conversion between two degenerate dimerized configurations: (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) ↔(-A⋅⋅⋅A-A⋅⋅⋅A-) . The emergence of this intra-stack dynamics upon heating gives rise to a second-order phase transition that is responsible for the change in the dominant magnetic interactions of the system. This suggests that the promotion of a (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) ↔(-A⋅⋅⋅A-A⋅⋅⋅A-) dynamics is a general mechanism for triggering spin transitions in DTA-based materials. Yet, this intra-stack dynamics does not suffice to generate bistability, which also requires a rearrangement of the intermolecular bonds between the π-stacks via a first-order phase transition.
A small molecule was under investigation as an inhibitor of glucosylceramide synthase (GCS) for potential use in Fabry disease. To support preclinical activities, a four-step synthesis was developed and used to prepared kilogram quantities of the drug substance. The new route features a scalable CDI-mediated Lossen rearrangement as a substitution for hazardous azide chemistry that was employed in the original route.
Derivatives of geraniol are versatile synthetic intermediates that are useful for synthesizing a variety of terpenoid natural products; however, the results presented herein show that subtle differences in the structures of functionalized geranyl chlorides can significantly impact their abilities to function as effective electrophiles in synthetic reactions. A series of focused kinetics experiments identify specific structure-activity relationships that illustrate the importance not only of steric bulk, but also of electronic effects from distant regions of the molecules that contribute to their overall levels of reactivity. Computational modeling suggests that destabilization of the reactant by filled-filled orbital mixing events in some, but not all, conformations may be a critical contributor to these important electronic effects.
Some ketones, especially 2,3-trans-3,4-cis-trisubstituted cyclopentanones, have strong inherent preferences to react through their less-substituted enolates, with neither kinetic nor thermodynamic conditions being able to selectively functionalize their moresubstituted enolate isomers. Herein we report a synthetic strategy to overcome this limitation and selectively access the more-substituted alkylation products of these ketones. The strategy's key feature is to utilize a MeOCH 2 O group to temporarily block the more-reactive α position and to direct the ketone to react through its inherently less-reactive enolate isomer. The products formed by this strategy are useful synthetic intermediates on the path to multiple families of natural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.