Propolis is one of the most fascinating honey bee (Apis mellifera L.) products. It is a plant derived product that bees\ud produce from resins that they collect from different plant organs and with which they mix beeswax. Propolis is a building\ud material and a protective agent in the bee hive. It also plays an important role in honey bee social immunity, and is\ud widely used by humans as an ingredient of nutraceuticals, over-the-counter preparations and cosmetics. Its chemical\ud composition varies by geographic location, climatic zone and local flora. The understanding of the chemical diversity of\ud propolis is very important in propolis research. In this manuscript, we give an overview of the available methods for\ud studying propolis in different aspects: propolis in the bee colony; chemical composition and plant sources of propolis;\ud biological activity of propolis with respect to bees and humans; and approaches for standardization and quality control\ud for the purposes of industrial application
The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.
Gas chromatography-mass spectrometry (GC-MS) is a primary tool used to identify compounds in complex samples. Both mass spectra and GC retention times are matched to those of standards, but it is often impractical to have standards on hand for every compound of interest, so we must rely on shared databases of MS data and GC retention information. Unfortunately, retention databases (e.g. linear retention index libraries) are experimentally restrictive, notoriously unreliable, and strongly instrument dependent, relegating GC retention information to a minor, often negligible role in compound identification despite its potential power. A new methodology called “retention projection” has great potential to overcome the limitations of shared chromatographic databases. In this work, we tested the reliability of the methodology in five independent laboratories. We found that even when each lab ran nominally the same method, the methodology was 3-fold more accurate than retention indexing because it properly accounted for unintentional differences between the GC-MS systems. When the labs used different methods of their own choosing, retention projections were 4- to 165-fold more accurate. More importantly, the distribution of error in the retention projections was predictable across different methods and labs, thus enabling automatic calculation of retention time tolerance windows. Tolerance windows at 99% confidence were generally narrower than those widely used even when physical standards are on hand to measure their retention. With its high accuracy and reliability, the new retention projection methodology makes GC retention a reliable, precise tool for compound identification, even when standards are not available to the user.
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.