The goal of image oversegmentation is to divide an image into several pieces, each of which should ideally be part of an object. One of the simplest and yet most effective oversegmentation algorithms is known as local variation (LV) (Felzenszwalb and Huttenlocher 2004). In this work, we study this algorithm and show that algorithms similar to LV can be devised by applying different statistical models and decisions, thus providing further theoretical justification and a wellfounded explanation for the unexpected high performance of the LV approach. Some of these algorithms are based on statistics of natural images and on a hypothesis testing decision; we denote these algorithms probabilistic local variation (pLV). The best pLV algorithm, which relies on censored estimation, presents state-of-the-art results while keeping the same computational complexity of the LV algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.