We present a definition of weak |-categories based on a higher-order generalization of apparatus of operads.1998 Academic Press Contents.1. From non-symmetric to higher order operads. Monoidal globular categories.3. Some examples. 4.Coherence for monoidal globular categories. Coproducts in monoidal globular categories.6. Collections in globular categories. 7.Higher-order operads and their algebras.8. Contractibility and weak categories. Higher fundamental groupoids.10. Appendix: 2-operads and bicategories.
The classical Eckmann-Hilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppose we have a one object, one arrow 2-category, then its Hom-set is a commutative monoid. A similar argument due to A.Joyal and R.Street shows that a one object, one arrow tricategory is 'the same' as a braided monoidal category.In this paper we begin to investigate how one can extend this argument to arbitrary dimension. We provide a simple categorical scheme which allows us to formalise the Eckmann-Hilton type argument in terms of the calculation of left Kan extensions in an appropriate 2-category. Then we apply this scheme to the case of n-operads in the author's sense and classical symmetric operads. We demonstrate that there exists a functor of symmetrisation Symn from a certain subcategory of n-operads to the category of symmetric operads such that the category of one object, one arrow , . . . , one (n − 1)-arrow algebras of A is isomorphic to the category of algebras of Symn(A). Under some mild conditions, we present an explicit formula for Symn(A) which involves taking the colimit over a remarkable categorical symmetric operad.We will consider some applications of the methods developed to the theory of n-fold loop spaces in the second paper of this series.
It is well known that the forgetful functor from symmetric operads to nonsymmetric operads has a left adjoint Sym1 given by product with the symmetric group operad. It is also well known that this functor does not affect the category of algebras of the operad. From the point of view of the author's theory of higher operads, the nonsymmmetric operads are 1-operads and Sym1 is the first term of the infinite series of left adjoint functors Symn, called symmetrisation functors, from n-operads to symmetric operads with the property that the category of one object, one arrow , . . . , one (n − 1)-arrow algebras of an n-operad A is isomorphic to the category of algebras of Symn(A).In this paper we consider some geometrical and homotopical aspects of the symmetrisation of n-operads. We follow Getzler and Jones and consider their decomposition of the Fulton-Macpherson operad of compactified real configuration spaces. We construct an n-operadic counterpart of this compactification which we call the Getzler-Jones operad. We study the properties of Getzler-Jones operad and find that it is contractible and cofibrant in an appropriate model category. The symmetrisation of the Getzler-Jones operad turns out to be exactly the operad of Fulton and Macpherson. These results should be considered as an extension of Stasheff's theory of 1-fold loop spaces to n-fold loop spaces n ≥ 2. We also show that a space X with an action of a contractible n-operad has a natural structure of an algebra over an operad weakly equivalent to the little n-disks operad. A similar result holds for chain operads. These results generalise the classical Eckman-Hilton argument to arbitrary dimension.Finally, we apply the techniques to the Swiss Cheese type operads introduced by Voronov and prove analogous results in this case.
One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads (Batanin, Adv Math 136:39-103, 1998) to this task. We present a general construction of a tensor product on the category of n-globular sets from any normalised (n + 1)-operad A, in such a way that the algebras for A may be recaptured as enriched categories for the induced tensor product. This is an important step in reconciling the globular and simplicial approaches to higher category theory, because in the simplicial approaches one proceeds inductively following the idea that a weak (n + 1)-category is something like a category enriched in weak n-categories. In this paper we reveal how such an intuition may be formulated in terms of globular operads.
We give an elementary and direct combinatorial definition of opetopes in terms of trees, well-suited for graphical manipulation and explicit computation. To relate our definition to the classical definition, we recast the Baez-Dolan slice construction for operads in terms of polynomial monads: our opetopes appear naturally as types for polynomial monads obtained by iterating the Baez-Dolan construction, starting with the trivial monad. We show that our notion of opetope agrees with Leinster's. Next we observe a suspension operation for opetopes, and define a notion of stable opetopes. Stable opetopes form a least fixpoint for the Baez-Dolan construction. A final section is devoted to example computations, and indicates also how the calculus of opetopes is well-suited for machine implementation.Comment: LaTeX, 54 pages, 75 texdraw figures. Accompanying opetope scripts in Tcl hidden in tex source after \end{document} for the sake of archival -- also available from http://mat.uab.cat/~kock/cat/zoom.html . v2: substantial expository improvements, following the advice from the referees. Final version, to appear in Adv. Mat
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.