A well-known challenge in learning from click data is its inherent bias and most notably position bias. Traditional click models aim to extract the ⟨query, document⟩ relevance and the estimated bias is usually discarded after relevance is extracted. In contrast, the most recent work on unbiased learning-to-rank can effectively leverage the bias and thus focuses on estimating bias rather than relevance [20,31]. Existing approaches use search result randomization over a small percentage of production traffic to estimate the position bias. This is not desired because result randomization can negatively impact users' search experience. In this paper, we compare different schemes for result randomization (i.e., RandTopN and RandPair) and show their negative effect in personal search. Then we study how to infer such bias from regular click data without relying on randomization. We propose a regressionbased Expectation-Maximization (EM) algorithm that is based on a position bias click model and that can handle highly sparse clicks in personal search. We evaluate our EM algorithm and the extracted bias in the learning-to-rank setting. Our results show that it is promising to extract position bias from regular clicks without result randomization. The extracted bias can improve the learning-to-rank algorithms significantly. In addition, we compare the pointwise and pairwise learning-to-rank models. Our results show that pairwise models are more effective in leveraging the estimated bias.
Click-through data has proven to be a critical resource for improving search ranking quality. Though a large amount of click data can be easily collected by search engines, various biases make it difficult to fully leverage this type of data. In the past, many click models have been proposed and successfully used to estimate the relevance for individual query-document pairs in the context of web search. These click models typically require a large quantity of clicks for each individual pair and this makes them difficult to apply in systems where click data is highly sparse due to personalized corpora and information needs, e.g., personal search. In this paper, we study the problem of how to leverage sparse click data in personal search and introduce a novel selection bias problem and address it in the learning-to-rank framework. This paper proposes a few bias estimation methods, including a novel query-dependent one that captures queries with similar results and can successfully deal with sparse data. We empirically demonstrate that learning-to-rank that accounts for query-dependent selection bias yields significant improvements in search effectiveness through online experiments with one of the world's largest personal search engines.
Current search engines do not, in general, perform well with longer, more verbose queries. One of the main issues in processing these queries is identifying the key concepts that will have the most impact on effectiveness. In this paper, we develop and evaluate a technique that uses query-dependent, corpus-dependent, and corpus-independent features for automatic extraction of key concepts from verbose queries. We show that our method achieves higher accuracy in the identification of key concepts than standard weighting methods such as inverse document frequency. Finally, we propose a probabilistic model for integrating the weighted key concepts identified by our method into a query, and demonstrate that this integration significantly improves retrieval effectiveness for a large set of natural language description queries derived from TREC topics on several newswire and web collections.
Many existing retrieval approaches do not take into account the content quality of the retrieved documents, although link-based measures such as PageRank are commonly used as a form of document prior. In this paper, we present the quality-biased ranking method that promotes documents containing high-quality content, and penalizes low-quality documents. The quality of the document content can be determined by its readability, layout and ease-of-navigation, among other factors. Accordingly, instead of using a single estimate for document quality, we consider multiple contentbased features that are directly integrated into a state-ofthe-art retrieval method. These content-based features are easy to compute, store and retrieve, even for large web collections. We use several query sets and web collections to empirically evaluate the performance of our quality-biased retrieval method. In each case, our method consistently improves by a large margin the retrieval performance of textbased and link-based retrieval methods that do not take into account the quality of the document content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.